DOI:

10.37988/1811-153X_2024_4_114

The search for the optimal object for determining the primary stability of dental implants in the framework of an experimental study

Authors

  • V.A. Badalyan 1, 2, Doctor of Science in Medicine, professor of the Dentistry Department; leading researcher at the Clinical and experimental implantology Division
    ORCID: 0000-0003-3885-9358
  • E.A. Levonian 1, postgraduate at the Dentistry Department
    ORCID: 0000-0002-1422-1862
  • B.A. Kudzaev 2, postgraduate at the Clinical and experimental implantology Division
    ORCID: 0009-0007-6734-0789
  • 1 Sechenov University, 119991, Moscow, Russia
  • 2 Central Research Institute of Dental and Maxillofacial Surgery, 119021, Moscow, Russia

Abstract

In the study of dental implants, one of the objectives is often to determine indicators of primary stability. However, this is not always possible during implant placement. Due to this fact the specialists face the task of searching for the optimal model for determining the primary stability of the dental implants within the framework of the experimental research. The article systematizes and summarizes the data of literature sources as well as the results of our own research in relation to the choice of the model for studying the primary stability of dental implants.
Conclusion.
When studying the primary stability parameters with the use of low-density bone the optimal object is the materials of animal origin with the dissected cortical component, for example, the breastbone of sheep or pigs. If it is necessary to study the primary stability with a more dense bone structure, the use of pig tibia is recommended.

Key words:

implantation, primary stability, experiment, minipigs, synthetic blocks

For Citation

[1]
Badalyan V.A., Levonian E.A., Kudzaev B.A. The search for the optimal object for determining the primary stability of dental implants in the framework of an experimental study. Clinical Dentistry (Russia).  2024; 27 (4): 114—121. DOI: 10.37988/1811-153X_2024_4_114

References

  1. Liu Y., Rath B., Tingart M., Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A. 2020; 108 (3): 470—484. PMID: 31664764
  2. Ziebart J., et al. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res. 2018; 7 (2): 187—195. PMID: 29682285
  3. Kohli N., Stoddart J.C., van Arkel R.J. The limit of tolerable micromotion for implant osseointegration: a systematic review. Sci Rep. 2021; 11 (1): 10797. PMID: 34031476
  4. Ivaschenko A.V., Yablokov A.E., Markov I.I., Monakov V.A., Nesterov A.M. Features of trophism of bone tissue after the installation of dental implants. Bulletin of Medical Institute “REAVIZ”: Rehabilitation, Doctor and Health. 2021; 3 (51): 79—84 (In Russian). eLIBRARY ID: 46245352
  5. Kulakov A.A., Kasparov A.S., Porfenchuk D.A. Factors affecting osteointegration and the use of early functional load to reduce the duration of treatment in dental implantation. Stomatology. 2019; 4: 107—115 (In Russian). eLIBRARY ID: 39548529
  6. Ancuta D.L., Coman C., Alexandru D.M., Crivineanu M. Animal models used in testing the biocompatibility of the dental implant — A review. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine. 2020; 77 (2): 1—6. DOI: 10.15835/buasvmcn-vm:2020.0020
  7. Blanc-Sylvestre N., Bouchard P., Chaussain C., Bardet C. Pre-clinical models in implant dentistry: Past, present, future. Biomedicines. 2021; 9 (11): 1538. PMID: 34829765
  8. de Macedo Bernardino I. de Lima Farias I., Cardoso A.M.R, Xavier A.F.C., Calvalcanti A.L. Use of animal models in experimental research in dentistry in Brazil. Pesquisa Brasileira em Odontopediatria e Clínica Integrada. 2014; 14 (1): 17—21.
  9. Ananeva A.Sh., Baraeva L.M., Bykov I.M., Verevkina Yu.V., Kurzanov A.N. Modeling of bone injuries in animal experiments. Innovative Medicine of Kuban. 2021; 1 (21): 47—55 (In Russian). eLIBRARY ID: 44817850
  10. Zhang Z., Gan Y., Guo Y., Lu X., Li X. Animal models of vertical bone augmentation (Review). Exp Ther Med. 2021; 22 (3): 919. PMID: 34335880
  11. Toder M.M., Shevela A.A., Shevela A.I., Mayborodin I.V. The detailed protocol of experimental works on rabbits: intrabone introduction of metal implants. Modern Problems of Science and Education. 2017; 3: 17 (In Russian). eLIBRARY ID: 29452278
  12. Meng X., Ziadlou R., Grad S., Alini M., Wen C., Lai Y., Qin L., Zhao Y., Wang X. Animal models of osteochondral defect for testing biomaterials. Biochem Res Int. 2020; 2020: 9659412. PMID: 32082625
  13. Mangione F., Salmon B., EzEldeen M., Jacobs R., Chaussain C., Vital S. Characteristics of large animal models for current cell-based oral tissue regeneration. Tissue Eng Part B Rev. 2022; 28 (3): 489—505. PMID: 33882717
  14. Dolzhikov A.A., Dolzhikova I.N. The problem of experimental model choice in biomedical researches of implants (review). Research Results in Biomedicine. 2018; 3: 49—62 (In Russian). eLIBRARY ID: 36808913
  15. Aksel H., Huang G.T. Human and swine dental pulp stem cells form a vascularlike network after angiogenic differentiation in comparison with endothelial cells: A quantitative analysis. J Endod. 2017; 43 (4): 588—595. PMID: 28258811
  16. Kochetkova T., Groetsch A., Indermaur M., Peruzzi C., Remund S., Neuenschwander B., Bellon B., Michler J., Zysset P., Schwiedrzik J. Assessing minipig compact jawbone quality at the microscale. J Mech Behav Biomed Mater. 2022; 134: 105405. PMID: 35947925
  17. Sparks D.S., Saifzadeh S., Savi F.M., Dlaska C.E., Berner A., Henkel J., Reichert J.C., Wullschleger M., Ren J., Cipitria A., McGovern J.A., Steck R., Wagels M., Woodruff M.A., Schuetz M.A., Hutmacher D.W. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat Protoc. 2020; 15 (3): 877—924. PMID: 32060491
  18. Fabbro M.D., Taschieri S., Canciani E., Addis A., Musto F., Weinstein R., Dellavia C. Osseointegration of titanium implants with different rough surfaces: A histologic and histomorphometric study in an adult minipig model. Implant Dent. 2017; 26 (3): 357—366. PMID: 28234707
  19. Seo D.J., Moon S.Y., You J.S., Lee W.P., Oh J.S. The effect of under-drilling and osseodensification drilling on low-density bone: A comparative ex vivo study. Applied Sciences. 2022; 12 (3): 1163. DOI: 10.3390/app12031163
  20. Smbatian B.S., Volkov A.V., Omarov T.V., Lomakin M.V. The study of osteointegration of KONMET implants having the bioactive surface. Russian Stomatology. 2014; 4: 15—24 (In Russian). eLIBRARY ID: 23052148
  21. Orlando F., Arosio F., Arosio P., Di Stefano D.A. Bone density and implant primary stability. A study on equine bone blocks. Dent J (Basel). 2019; 7 (3): 73. PMID: 31266214
  22. Comuzzi L., Tumedei M., Pontes A.E., Piattelli A., Iezzi G. Primary stability of dental implants in low-density (10 and 20 pcf) polyurethane foam blocks: Conical vs cylindrical implants. Int J Environ Res Public Health. 2020; 17 (8): 2617. PMID: 32290361
  23. de Carvalho Formiga M., Gehrke A.F., De Bortoli J.P., Gehrke S.A. Can the design of the instruments used for undersized osteotomies influence the initial stability of implants installed in low-density bone? An in vitro pilot study. PLoS One. 2021; 16 (10): e0257985. PMID: 34618848

Received

August 20, 2024

Accepted

October 7, 2024

Published on

December 17, 2024