DOI:
10.37988/1811-153X_2022_4_159Применение наночастиц металлов и их оксидов в стоматологических композитных материалах и конструкциях. Обзор (часть 1)
Загрузки
Аннотация
Нанотехнологии позволяют получать наночастицы размером 1—100 нм. При данных размерах кардинально меняются химические, физические и оптические свойства материалов. Наночастицы металлов и их оксидов перспективны для синтеза принципиально новых биоактивных медицинских материалов и конструкций. В качестве антибактериальных средств нового поколения наночастицы металлов и их оксидов демонстрируют выраженные, длительные бактерицидные свойства, благодаря большему соотношению площади поверхности наночастицы к ее объему. В связи с распространением устойчивости бактерий к антибиотикам, вспышками инфекционных заболеваний, появлением новых резистентных штаммов микроорганизмов фармацевтические компании, научно-исследовательские университеты изучают и разрабатывают принципиально новые антибактериальные субстанции. . Наночастицы металлов и их оксидов можно использовать в качестве эффективных ингибиторов развития и созревания биопленки полости рта, для предотвращения повторной колонизации границы раздела сред пломба — адгезивный посредник — зуб, микробной деградации стоматологических композитов, ортопедических, ортодонтических, хирургических конструкций, профилактики и терапии воспалительных заболеваний челюстно-лицевой области.Ключевые слова:
наночастицы, наномедицина, нанобиоматериалы, нанотехнологии, антибактериальное средствоДля цитирования
[1]
Иванов С.Ю., Карасенков Я.Н., Латута Н.В., Джатдаев В.В., Егоров Е.А., Тарасова Е.К., Козлова Э.В., Козлов П.А. Применение наночастиц металлов и их оксидов в стоматологических композитных материалах и конструкциях. Обзор (часть 1). — Клиническая стоматология. — 2022; 25 (4): 159—165. DOI: 10.37988/1811-153X_2022_4_159
Список литературы
- Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. — Molecules. — 2019; 25 (1): E112. PMID: 31892180
- Azharuddin M., Zhu G.H., Das D., Ozgur E., Uzun L., Turner A.P.F., Patra H.K. A repertoire of biomedical applications of noble metal nanoparticles. — Chem Commun (Camb). — 2019; 55 (49): 6964—6996. PMID: 31140997
- Prominski A., Li P., Miao B.A., Tian B. Nanoenabled bioelectrical modulation. — Acc Mater Res. — 2021; 2 (10): 895—906. PMID: 34723193
- Zhu G., Huang Z., Xu Z., Yan L.T. Tailoring interfacial nanoparticle organization through entropy. — Acc Chem Res. — 2018; 51 (4): 900—909. PMID: 29589915
- Parameswaran R., Tian B. Rational design of semiconductor nanostructures for functional subcellular interfaces. — Acc Chem Res. — 2018; 51 (5): 1014—1022. PMID: 29668260
- Arslan E., Hatip Koc M., Uysal O., Dikecoglu B., Topal A.E., Garifullin R., Ozkan A.D., Dana A., Hermida-Merino D., Castelletto V., Edwards-Gayle C., Baday S., Hamley I., Tekinay A.B., Guler M.O. Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells. — Biomacromolecules. — 2017; 18 (10): 3114—3130. PMID: 28840715
- Wu G.F., Zhu J., Weng G.J., Li J.J., Zhao J.W. Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. — Mikrochim Acta. — 2021; 188 (10): 345. PMID: 34537870
- Abbasi E., Milani M., Fekri Aval S., Kouhi M., Akbarzadeh A., Tayefi Nasrabadi H., Nikasa P., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Samiei M. Silver nanoparticles: Synthesis methods, bio-applications and properties. — Crit Rev Microbiol. — 2016; 42 (2): 173—80. PMID: 24937409
- Sathiyanarayanan G., Dineshkumar K., Yang Y.H. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. — Crit Rev Microbiol. — 2017; 43 (6): 731—752. PMID: 28440091
- Vimbela G.V., Ngo S.M., Fraze C., Yang L., Stout D.A. Antibacterial properties and toxicity from metallic nanomaterials. — Int J Nanomedicine. — 2017; 12: 3941—3965. PMID: 28579779
- Niemirowicz K., Durnaś B., Tokajuk G., Piktel E., Michalak G., Gu X., Kułakowska A., Savage P.B., Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. — Sci Rep. — 2017; 7 (1): 4610. PMID: 28676673
- Ahmad N., Jafri Z., Khan Z.H. Evaluation of nanomaterials to prevent oral Candidiasis in PMMA based denture wearing patients. A systematic analysis. — J Oral Biol Craniofac Res. — 2020; 10 (2): 189—193. PMID: 32373449
- Araujo H.C., da Silva A.C.G., Paião L.I., Magario M.K.W., Frasnelli S.C.T., Oliveira S.H.P., Pessan J.P., Monteiro D.R. Antimicrobial, antibiofilm and cytotoxic effects of a colloidal nanocarrier composed by chitosan-coated iron oxide nanoparticles loaded with chlorhexidine. — J Dent. — 2020; 101: 103453. PMID: 32827599
- Yu Q., Li J., Zhang Y., Wang Y., Liu L., Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. — Sci Rep. — 2016; 6: 26667. PMID: 27220400
- Reding-Roman C., Hewlett M., Duxbury S., Gori F., Gudelj I., Beardmore R. The unconstrained evolution of fast and efficient antibiotic-resistant bacterial genomes. — Nat Ecol Evol. — 2017; 1 (3): 50. PMID: 28812723
- Baranova A.A., Alferova V.A., Korshun V.A., Tyurin A.P. Antibiotics from extremophilic micromycetes. — Russ J Bioorg Chem. — 2020; 46 (6): 903—971. PMID: 33390684
- Suay-García B., Pérez-Gracia M.T. Future prospects for Neisseria gonorrhoeae Treatment. — Antibiotics (Basel). — 2018; 7 (2): E49. PMID: 29914071
- Pompilio A., Scribano D., Sarshar M., Di Bonaventura G., Palamara A.T., Ambrosi C. Gram-negative bacteria holding together in a biofilm: The Acinetobacter baumannii way. — Microorganisms. — 2021; 9 (7): 1353. PMID: 34206680
- Żelechowska P., Agier J., Brzezińska-Błaszczyk E. Endogenous antimicrobial factors in the treatment of infectious diseases. — Cent Eur J Immunol. — 2016; 41 (4): 419—425. PMID: 28450805
- Paprocka P., Durnaś B., et al. New β-Lactam antibiotics and ceragenins — A study to assess their potential in treatment of infections caused by multidrug-resistant strains of Pseudomonas aeruginosa. — Infect Drug Resist. — 2021; 14: 5681—5698. PMID: 34992394
- Удегова Е.С., Гильдеева К.А., Рукосуева Т.В., Сьед Б. Антибактериальный эффект наночастиц металлов на антибиотикорезистентные штаммы бактерий. — Инфекция и иммунитет. — 2021; 4: 771—776. eLIBRARY ID: 46566978
- Abramenko N., Deyko G., et al. Acute toxicity of Cu-MOF nanoparticles (nanoHKUST-1) towards embryos and adult zebrafish. — Int J Mol Sci. — 2021; 22 (11): 5568. PMID: 34070324
- Jarai B.M., Stillman Z., et al. Evaluating UiO-66 metal-organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. — ACS Appl Mater Interfaces. — 2020; 12 (35): 38989—39004. PMID: 32805901
- Kulkarni S., Pandey A., et al. ZIF-8 nano confined protein-titanocene complex core-shell MOFs for efficient therapy of Neuroblastoma: Optimization, molecular dynamics and toxicity studies. — Int J Biol Macromol. — 2021; 178: 444—463. PMID: 33636277
- Xia Q., Chen Z., et al. Near-infrared organic fluorescent nanoparticles for long-term monitoring and photodynamic therapy of cancer. — Nanotheranostics. — 2019; 3 (2): 156—165. PMID: 31008024
- Yang S., Li Y. Fluorescent hybrid silica nanoparticles and their biomedical applications. — Wiley Interdiscip Rev Nanomed Nanobiotechnol. — 2020; 12 (3): e1603. PMID: 31837124
- Rashki S., Asgarpour K., et al. Chitosan-based nanoparticles against bacterial infections. — Carbohydr Polym. — 2021; 251: 117108. PMID: 33142645
- Rizeq B.R., Younes N.N., Rasool K., Nasrallah G.K. Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. — Int J Mol Sci. — 2019; 20 (22): E5776. PMID: 31744157
- Kulkarni J.A., Witzigmann D., Leung J., Tam Y.Y.C., Cullis P.R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. — Nanoscale. — 2019; 11 (45): 21733—21739. PMID: 31713568
- Witzigmann D., Kulkarni J.A., et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. — Adv Drug Deliv Rev. — 2020; 159: 344—363. PMID: 32622021
- Ding D., Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. — Mater Sci Eng C Mater Biol Appl. — 2018; 92: 1041—1060. PMID: 30184728
- Danhier F., Ansorena E., et al. PLGA-based nanoparticles: an overview of biomedical applications. — J Control Release. — 2012; 161 (2): 505—22. PMID: 22353619
- Anuje M., Pawaskar P.N., et al. Synthesis, characterization, and cytotoxicity evaluation of polyethylene glycol-coated iron oxide nanoparticles for radiotherapy application. — J Med Phys. — 2021; 46 (3): 154—161. PMID: 34703099
- Qin Y., Shan X., Han Y., Jin H., Gao Y. Study of pH-responsive and polyethylene glycol-modified doxorubicin-loaded mesoporous silica nanoparticles for drug delivery. — J Nanosci Nanotechnol. — 2020; 20 (10): 5997—6006. PMID: 32384944
- Ge X., Cao Z., Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. — Antioxidants (Basel). — 2022; 11 (4): 791. PMID: 35453476
- Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. — Int J Nanomedicine. — 2020; 15: 2555—2562. PMID: 32368040
- Naikoo G., Al-Mashali F., et al. An overview of copper nanoparticles: Synthesis, characterisation and anticancer activity. — Curr Pharm Des. — 2021; 27 (43): 4416—4432. PMID: 34348615
- Javed R., Ain N.U., Gul A., Arslan Ahmad M., Guo W., Ao Q., Tian S. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. — IET Nanobiotechnol. — 2022; 16 (5): 171—189. PMID: 35411585
- Koshevaya E., Krivoshapkina E., Krivoshapkin P. Tantalum oxide nanoparticles as an advanced platform for cancer diagnostics: a review and perspective. — J Mater Chem B. — 2021; 9 (25): 5008—5024. PMID: 34113950
- Toledano M., Vallecillo-Rivas M., et al. Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. — J Dent. — 2021; 107: 103616. PMID: 33636241
- Martin A., Cai J., et al. Zein-polycaprolactone core-shell nanofibers for wound healing. — Int J Pharm. — 2022; 621: 121809. PMID: 35550408
- Anil A., Ibraheem W.I., et al. Nano-hydroxyapatite (nHAp) in the remineralization of early dental caries: A scoping review. — Int J Environ Res Public Health. — 2022; 19 (9): 5629. PMID: 35565022
- Luo W., Huang Y., et al. The effect of disaggregated nano-hydroxyapatite on oral biofilm in vitro. — Dent Mater. — 2020; 36 (7): e207-e216. PMID: 32417013
- Zhao R., Lv M., et al. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. — ACS Appl Mater Interfaces. — 2017; 9 (18): 15328—15341. PMID: 28422486
- Li J., Zheng J., et al. Facile synthesis of rGO-MoS2-Ag nanocomposites with long-term antimicrobial activities. — Nanotechnology. — 2020; 31 (12): 125101. PMID: 31770730
- Sterzenbach T., Helbig R., et al. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. — Clin Oral Investig. — 2020; 24 (12): 4237—4260. PMID: 33111157
- Zhao F., Zeng J., Parvez Arnob M.M., et al. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots. — Nanoscale. — 2014; 6 (14): 8199—207. PMID: 24926835
- Wang Y., Hua H., et al. Surface modification of ZrO2 nanoparticles and its effects on the properties of dental resin composites. — ACS Appl Bio Mater. — 2020; 3 (8): 5300—5309. PMID: 35021704
- Dizaj S.M., Lotfipour F., et al. Antimicrobial activity of the metals and metal oxide nanoparticles. — Mater Sci Eng C Mater Biol Appl. — 2014; 44: 278—84. PMID: 25280707
- Wang N., Fuh J.Y.H., Dheen S.T., Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. — J Biomed Mater Res B Appl Biomater. — 2021; 109 (2): 160—179. PMID: 32776481
- Kim H., Bang K.M., et al. Tyrosyltyrosylcysteine-directed synthesis of chiral cobalt oxide nanoparticles and peptide conformation analysis. — ACS Nano. — 2021; 15 (1): 979—988. PMID: 33332089
- Pavlova E.L., Toshkovska R.D., et al. Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine. — Arch Microbiol. — 2020; 202 (7): 1873—1880. PMID: 32448965
- Zafar N., Madni A., et al. Pharmaceutical and biomedical applications of green synthesized metal and metal oxide nanoparticles. — Curr Pharm Des. — 2020; 26 (45): 5844—5865. PMID: 33243108
- Khan A.A.P., Khan A., Asiri A.M., Ashraf G.M., Alhogbia B.G. Graphene Oxide based metallic nanoparticles and their some biological and environmental application. — Curr Drug Metab. — 2017; 18 (11): 1020—1029. PMID: 29034831
- Ржеусский С.Э. Наночастицы серебра в медицине. — Вестник Витебского государственного медицинского университета. — 2022; 2: 15—24. eLIBRARY ID: 48468519
- Ng V.W., Chan J.M., et al. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. — Adv Drug Deliv Rev. — 2014; 78: 46—62. PMID: 25450263
- Tuli H.S., Kashyap D., et al. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. — Life Sci. — 2015; 143: 71—9. PMID: 26524969
- Neves A.C.O., Viana A.D., et al. Biospectroscopy and chemometrics as an analytical tool for comparing the antibacterial mechanism of silver nanoparticles with popular antibiotics against Escherichia coli. — Spectrochim Acta A Mol Biomol Spectrosc. — 2021; 253: 119558. PMID: 33631629
- Ramburrun P., Pringle N.A., Dube A., Adam R.Z., D.’Souza S., Aucamp M. Recent advances in the development of antimicrobial and antifouling biocompatible materials for dental applications. — Materials (Basel). — 2021; 14 (12): 3167. PMID: 34207552
- Choi S.H., Jang Y.S., et al. Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application. — J Appl Biomater Funct Mater. — 2019; 17 (3): 2280800019847067. PMID: 31530071
- Sadoon A.A., Khadka P., et al. Silver ions caused faster diffusive dynamics of histone-like nucleoid-structuring proteins in live bacteria. — Appl Environ Microbiol. — 2020; 86 (6): e02479—19. PMID: 31953329
- Kędziora A., Wieczorek R., et al. Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: Experimental and computational studies. — Front Microbiol. — 2021; 12: 659614. PMID: 34276595
- Betts H.D., Neville S.L., et al. The biochemical fate of Ag+ ions in Staphylococcus aureus, Escherichia coli, and biological media. — J Inorg Biochem. — 2021; 225: 111598. PMID: 34517168
- Joshi A.S., Singh P., Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. — Int J Mol Sci. — 2020; 21 (20): E7658. PMID: 33081366
- Malic S., Rai S., et al. Zeolite-embedded silver extends antimicrobial activity of dental acrylics. — Colloids Surf B Biointerfaces. — 2019; 173: 52—57. PMID: 30266020
- Kennes K., Martin C., et al. Silver zeolite composite-based LEDs: Origin of electroluminescence and charge transport. — ACS Appl Mater Interfaces. — 2019; 11 (13): 12179—12183. PMID: 30880384
- Janićijević D., Uskoković-Marković S., et al. Double active BEA zeolite/silver tungstophosphates — Antimicrobial effects and pesticide removal. — Sci Total Environ. — 2020; 735: 139530. PMID: 32473436
- Hissae Yassue-Cordeiro P., Zandonai C.H., et al. Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. — Pharmaceutics. — 2019; 11 (10): E535. PMID: 31615120
- Qing Y., Li K., Li D., Qin Y. Antibacterial effects of silver incorporated zeolite coatings on 3D printed porous stainless steels. — Mater Sci Eng C Mater Biol Appl. — 2020; 108: 110430. PMID: 31923959
- Xu V.W., Nizami M.Z.I., Yin I.X., Yu O.Y., Lung C.Y.K., Chu C.H. Application of copper nanoparticles in dentistry. — Nanomaterials (Basel). — 2022; 12 (5): 805. PMID: 35269293
- Невежина А.В., Фадеева Т.В. Перспективы создания антимикробных препаратов на основе наночастиц меди и оксидов меди. — Acta Biomedica Scientifica (East Siberian Biomedical Journal). — 2021; 6-2: 37—50. eLIBRARY ID: 47426035
- Raura N., Garg A., Arora A., Roma M. Nanoparticle technology and its implications in endodontics: a review. — Biomater Res. — 2020; 24 (1): 21. PMID: 33292702
- Ma X., Zhou S., Xu X., Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. — Front Surg. — 2022; 9: 905892. PMID: 35990090
- Korsch M., Marten S.M., et al. Microbiological findings in early and late implant loss: an observational clinical case-controlled study. — BMC Oral Health. — 2021; 21 (1): 112. PMID: 33706748
- Obst U., Marten S.M., et al. Diversity of patients microflora on orthopaedic and dental implants. — Int J Artif Organs. — 2012; 35 (10): 727—34. PMID: 23138700
- Arora R.K., Mordan N.J., Spratt D.A., Ng Y.L., Gulabivala K. Bacteria in the cavity-restoration interface after varying periods of clinical service — SEM description of distribution and 16S rRNA gene sequence identification of isolates. — Clin Oral Investig. — 2022; 26 (7): 5029—5044. PMID: 35359188
- Vasiliu S., Racovita S., Gugoasa I.A., Lungan M.A., Popa M., Desbrieres J. The benefits of smart nanoparticles in dental applications. — Int J Mol Sci. — 2021; 22 (5): 2585. PMID: 33806682
- Liu K., He Z., Byrne H.J., Curtin J.F., Tian F. Investigating the role of gold nanoparticle shape and size in their toxicities to fungi. — Int J Environ Res Public Health. — 2018; 15 (5): E998. PMID: 29772665
- Xie W., Guo Z., et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. — Theranostics. — 2018; 8 (12): 3284—3307. PMID: 29930730
Загрузки
Поступила
11.07.2022
Принята
18.10.2022
Опубликовано
21.12.2022