DOI:

10.37988/1811-153X_2024_4_61

Anthropomorphic dental robot in practice-oriented education: prospects for improvement

Authors

  • Y.N. Kharakh 1, PhD in Medical Sciences, associate professor of the Prosthodontics and digital technologies Department
    ORCID: 0000-0001-7181-8211
  • A.A. Yuzhakov 2, Doctor of Science in Engineering, full professor of the “Automatics and telemechanics” department
    ORCID: 0000-0003-1865-2448
  • A.A. Baydarov 2, PhD in Engineering, assistant professor of the “Automatics and telemechanics” department
    ORCID: 0000-0003-3888-3358
  • N.B. Astashina 3, Doctor of Science in Medicine, full professor of the Prosthodontics Department
    ORCID: 0000-0003-1135-7833
  • S.D. Arutyunov 1, Doctor of Science in Medicine, full professor of the Prosthodontics and digital technologies Department
    ORCID: 0000-0001-6512-8724
  • 1 Russian University of Medicine, 127006, Moscow, Russia
  • 2 Perm National Research Polytechnic University, 614990, Perm, Russia
  • 3 Perm State Medical University, 614000, Perm, Russia

Abstract

The article provides an overview of current developments in the field of anthropomorphic dental robots and their application in practice-oriented education. The aim of the study is to assess the physical and functional aspects of robot anthropomorphism, their impact on the psychometric characteristics of students, and to analyze the prospects for the development of these technologies. The paper examines key components of anthropomorphic robots, such as motion sensors, emotion recognition and speech synthesis systems, as well as the potential for using cloud technologies to enhance the efficiency of the educational process. The results demonstrate that anthropomorphic robots contribute to the improvement of educational methods, deepen understanding of the material, and foster the development of professional skills in students. However, technological challenges requiring further research were noted, including improving the realism of movements, voice interaction, and the integration of sensory systems. It is anticipated that further development of data processing technologies and cloud services will contribute to the creation of more interactive and adaptive educational platforms, enhancing student engagement and satisfaction.

Key words:

anthropomorphism, educational technology, robotics, dental education, simulation training

For Citation

[1]
Kharakh Y.N., Yuzhakov A.A., Baydarov A.A., Astashina N.B., Arutyunov S.D. Anthropomorphic dental robot in practice-oriented education: prospects for improvement. Clinical Dentistry (Russia).  2024; 27 (4): 61—69. DOI: 10.37988/1811-153X_2024_4_61

References

  1. Prisyazhnaya N.V., Vyatkina N.Yu. Employment of a young medical specialist: levels of manifestation of the problem. Bulletin of the Institute of Sociology. 2023; 1: 101—114 (In Russian). eLIBRARY ID: 50501092
  2. Golovkina M.V. Problems of learning intensification in education students of technical universities in studying natural sciences. International Journal of Experimental Education. 2021; 1: 31—36 (In Russian). eLIBRARY ID: 44804949
  3. Beulens A.J.W., et al. Training novice robot surgeons: Proctoring provides same results as simulator-generated guidance. J Robot Surg. 2021; 15 (3): 397—428. PMID: 32651769
  4. Kagramanyan I.N., Tarasenko A.I., Kupeeva I.A., Yanushevich O.O., Pashkov K.A., Efimov A.O. Historical aspects of the medical education system transformation. National Health Care (Russia). 2021; 1: 32—40 (In Russian). eLIBRARY ID: 46648535
  5. Yanushevich O., Tashkinov A., Minaeva N., Arutyunov S., Astashina N., Baydarov A., Bezukladnikov I., Yuzhakov A. Dental anthropomorphic robot. A new era in imitation of medical manipulation and clinical admission. Cathedra. Dental education. 2021; 78: 64—67 (In Russian). eLIBRARY ID: 48219409
  6. Wang K., et al. The effectiveness of educational robots in improving learning outcomes: A meta-analysis. Sustainability. 2023; 15 (5): 4637. DOI: 10.3390/su15054637
  7. Astashina N.B., Baydarov A.A., Arutyunov S.D., Yuzhakov A.A., Kokoulin A.N., Valikhmetova K.R., Mayorov P.V., Shamarina A.M., Lazarkov P.V., Vronsky A.S., Kharakh Ya.N. Development of “artificial intellect based dental android system” for simulation of medical manipulations and doctor-patient communication. Perm Medical Journal. 2022; 6: 62—70 (In Russian). eLIBRARY ID: 50094348
  8. Epley N., Waytz A., Cacioppo J.T. On seeing human: a three-factor theory of anthropomorphism. Psychol Rev. 2007; 114 (4): 864—86. PMID: 17907867
  9. Epley N., Waytz A., Akalis S., Cacioppo J.T. When we need a human: Motivational determinants of anthropomorphism. Social Cognition. 2008; 26 (2): 143—155. DOI: 10.1521/soco.2008.26.2.143
  10. Ishiguro H. Android science: conscious and subconscious recognition. Connection Science. 2006; 18 (4): 319—332. DOI: 10.1080/09540090600873953
  11. Gan Y., et al. Integrating aesthetic and emotional preferences in social robot design: An affective design approach with Kansei Engineering and Deep Convolutional Generative Adversarial Network. International Journal of Industrial Ergonomics. 2021; 83: 103128. DOI: 10.1016/j.ergon.2021.103128
  12. Gubenko A., Kirsch C., Smilek J.N., Lubart T., Houssemand C. Educational robotics and robot creativity: An interdisciplinary dialogue. Front Robot AI. 2021; 8: 662030. PMID: 34222352
  13. Seo K., Tang J., Roll I., Fels S., Yoon D. The impact of artificial intelligence on learner-instructor interaction in online learning. International Journal of Educational Technology in Higher Education. 2021; 18 (1): 54. PMID: 34778540
  14. Wang W., Chen Y., Li R., Jia Y. Learning and comfort in human—robot interaction: A review. Applied Sciences. 2019; 9 (23): 5152. DOI: 10.3390/app9235152
  15. Podpečan V. Can you dance? A study of child—robot interaction and emotional response using the NAO robot. Multimodal Technologies and Interaction. 2023; 7 (9): 85. DOI: 10.3390/mti7090085.
  16. Yu C.C., et al. The development of empathy in the healthcare setting: a qualitative approach. BMC Med Educ. 2022; 22 (1): 245. PMID: 35379249
  17. Mori M., MacDorman K.F., Kageki N. The uncanny valley [From the Field]. IEEE Robotics & Automation Magazine. 2012; 19 (2): 98—100. DOI: 10.1109/MRA.2012.2192811
  18. MacDorman K.F., Ishiguro H. The uncanny advantage of using androids in cognitive and social science research. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems. 2006; 7 (3): 297—337. DOI: 10.1075/is.7.3.03mac
  19. Arutyunov S.D., Yuzhakov A.A., Kharakh Y.N., Bezukladnikov I.I., Baidarov A.A., Astashina N.B. Dental simulator based on a robotic complex with an integrated smart jaw. Russian Journal of Dentistry. 2023; 1: 63—70 (In Russian). eLIBRARY ID: 54023292
  20. Schiavo F., et al. Educational robots, emotion recognition and ASD: New horizon in special education. Education Sciences. 2024; 14 (3): 258. DOI: 10.3390/educsci14030258
  21. Liu Y., Wang S., Xie Y., Xiong T., Wu M. A review of sensing technologies for indoor autonomous mobile robots. Sensors (Basel). 2024; 24 (4): 1222. PMID: 38400380
  22. Rosique F., Navarro P.J., Fernández C., Padilla A. A systematic review of perception system and simulators for autonomous vehicles research. Sensors (Basel). 2019; 19 (3): 648. PMID: 30764486
  23. Do Y., Kim J. Infrared range sensor array for 3D sensing in robotic applications. International Journal of Advanced Robotic Systems. 2013; 10 (4). DOI: 10.5772/55896
  24. Papagianopoulos I., et al. Obstacle detection in infrared navigation for blind people and mobile robots. Sensors (Basel). 2023; 23 (16): 7198. PMID: 37631734
  25. Filippini C., Perpetuini D., Cardone D., Chiarelli A.M., Merla A. Thermal infrared imaging-based affective computing and its application to facilitate human robot interaction: A review. Applied Sciences. 2020; 10 (8): 2924. DOI: 10.3390/app10082924
  26. Gómez J., Aycard O., Baber J. Efficient detection and tracking of human using 3D LiDAR sensor. Sensors (Basel). 2023; 23 (10): 4720. PMID: 37430633
  27. Ko K., Gwak H., Thoummala N., Kwon H., Kim S. SqueezeFace: Integrative face recognition methods with LiDAR sensors. Journal of Sensors. 2021; 4312245. DOI: 10.1155/2021/4312245
  28. Jalal A., et al. A study of accelerometer and gyroscope measurements in physical life-log activities detection systems. Sensors (Basel). 2020; 20 (22): 6670. PMID: 33233412
  29. Passaro V.M.N., et al. Gyroscope technology and applications: A review in the industrial perspective. Sensors (Basel). 2017; 17 (10): 2284. PMID: 28991175
  30. Tran D.S., et al. Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network. Applied Sciences. 2020; 10 (2): 722. DOI: 10.3390/app10020722
  31. Fang B., Zhao Y., Han G., He J. Expression-guided deep joint learning for facial expression recognition. Sensors (Basel). 2023; 23 (16): 7148. PMID: 37631685
  32. Lawpanom R., Songpan W., Kaewyotha J. Advancing facial expression recognition in online learning education using a homogeneous ensemble convolutional neural network approach. Applied Sciences. 2024; 14 (3): 1156. DOI: 10.3390/app14031156
  33. Pham T.D., et al. CNN-based facial expression recognition with simultaneous consideration of inter-class and intra-class variations. Sensors (Basel). 2023; 23 (24): 9658. PMID: 38139503
  34. Farag A., Hashem D. Impact of the haptic virtual reality simulator on dental students› psychomotor skills in preclinical operative dentistry. Clin Pract. 2021; 12 (1): 17—26. PMID: 35076504
  35. Paternò L., Lorenzon L. Soft robotics in wearable and implantable medical applications: Translational challenges and future outlooks. Front Robot AI. 2023; 10: 1075634. PMID: 36845334
  36. Hassan S., Wang L., Mahmud K.R. Robotic odor source localization via vision and olfaction fusion navigation algorithm. Sensors (Basel). 2024; 24 (7): 2309. PMID: 38610520
  37. Ye N., Wang D., Dai Y. Enhancing autonomous vehicle lateral control: A linear complementarity model-predictive control approach. Applied Sciences. 2023; 13: 10809. DOI: 10.3390/app131910809
  38. Korepanov V.O., Novikov D.A. Reflexive partitionings method in the models of collective behaviour and control. Control Sciences. 2011; 1: 21—32 (In Russian). eLIBRARY ID: 15552782
  39. Ali R., et al. An integrated MVDR beamformer for speech enhancement using a local microphone array and external microphones. EURASIP Journal on Audio, Speech, and Music Processing. 2021; 10 (2021). DOI: 10.1186/s13636-020-00192-2
  40. Da Silva B., Braeken A., Touhafi A. FPGA-based architectures for acoustic beamforming with microphone arrays: Trends, challenges and research opportunities. Computers. 2018; 7 (3): 41. DOI: 10.3390/computers7030041
  41. Kisenwether J.S., Sataloff R.T. The effect of microphone type on acoustical measures of synthesized vowels. J Voice. 2015; 29 (5): 548—51. PMID: 25998411
  42. Svec J.G., Granqvist S. Guidelines for selecting microphones for human voice production research. Am J Speech Lang Pathol. 2010; 19 (4): 356—68. PMID: 20601621
  43. Younis H.A., et al. A systematic literature review on the applications of robots and natural language processing in education. Electronics. 2023; 12 (13): 2864. DOI: 10.3390/electronics12132864
  44. Shiri F.M., et al. A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU. arXiv preprint. 2023; 2305.17473. DOI: 10.48550/arXiv.2305.17473
  45. Yuzhakov A.A., Arutyunov S.D., Astashina N.B., Baidarov A.A., Bezukladnikov I.I., Storozhev S.A. Development of an anthropomorphic dental simulator based on the Robo-C Robot. Bulletin of Kalashnikov ISTU. 2023; 4: 13—22 (In Russian). eLIBRARY ID: 55862305
  46. Islam S., et al. A comprehensive survey on applications of transformers for deep learning tasks. Expert Systems with Applications. 2023; 122666. DOI: 10.1016/j.eswa.2023.122666
  47. Zhang Z. Mechanics of human voice production and control. J Acoust Soc Am. 2016; 140 (4): 2614. PMID: 27794319
  48. Boilard J., et al. A literature review of WaveNet: Theory, application, and optimization. In: proceedings of the 146th Convention of the Audio Engineering Society. Dublin, 2019. Paper 10171.
  49. Saha O., Dasgupta P. A comprehensive survey of recent trends in cloud robotics architectures and applications. Robotics. 2018; 7 (3): 47. DOI: 10.3390/robotics7030047
  50. Afrin M., Jin J., Rahman A., Rahman A., Wan J., Hossain E. Resource allocation and service provisioning in multi-agent cloud robotics: A comprehensive survey. IEEE Communications Surveys & Tutorials. 2021; 23 (2): 842—870. DOI: 10.1109/COMST.2021.3061435
  51. Mangaroska K., Vesin B., Kostakos V., Brusilovsky P., Giannakos M.N. Architecting analytics across multiple e-learning systems to enhance learning design. IEEE Transactions on Learning Technologies. 2021; 14 (2): 173—188. DOI: 10.1109/TLT.2021.3072159
  52. Arutyunov S.D., et al. Interactive digital platform and cyber-physical systems in medical education. Parodontologiya. 2022; 4: 318—326 (In Russian). eLIBRARY ID: 50006339
  53. Govea J., et al. Optimization and scalability of educational platforms: Integration of artificial intelligence and cloud computing. Computers. 2023; 12 (11): 223. DOI: 10.3390/computers12110223
  54. Nogueira E., Moreira A., Lucrédio D., Garcia V., Fortes R. Issues on developing interoperable cloud applications: definitions, concepts, approaches, requirements, characteristics and evaluation models. Journal of Software Engineering Research and Development. 2016; 4: 7. DOI: 10.1186/s40411-016-0033-6
  55. Naudet Y., Latour T., Guedria W., Chen D. Towards a systemic formalisation of interoperability. Computers in Industry. 2010; 61 (2): 176—185. DOI: 10.1016/j.compind.2009.10.014
  56. Rezaei R., Chiew T.K., Lee S.P., Shams Aliee Z. Interoperability evaluation models: A systematic review. Computers in Industry. 2014; 65 (1): 1—23. DOI: 10.1016/j.compind.2013.09.001
  57. Abuhassna H., et al. Development of a new model on utilizing online learning platforms to improve students’ academic achievements and satisfaction. International Journal of Educational Technology in Higher Education. 2020; 17: 38. DOI: 10.1186/s41239-020-00216-z
  58. El-Sabagh H.A. Adaptive e-learning environment based on learning styles and its impact on development students› engagement. International Journal of Educational Technology in Higher Education. 2021; 18: 53. DOI: 10.1186/s41239-021-00289-4
  59. Farrell O., Brunton J. A balancing act: a window into online student engagement experiences. International Journal of Educational Technology in Higher Education. 2020; 17: 25. DOI: 10.1186/s41239-020-00199-x
  60. Noor U., et al. Learning behavior, digital platforms for learning and its impact on university student›s motivations and knowledge development. Front Psychol. 2022; 13: 933974. PMID: 36506979
  61. Schömbs S., Klein J., Roesler E. Feeling with a robot-the role of anthropomorphism by design and the tendency to anthropomorphize in human-robot interaction. Front Robot AI. 2023; 10: 1149601. PMID: 37334072
  62. Suzuki Y., Galli L., Ikeda A., Itakura S., Kitazaki M. Measuring empathy for human and robot hand pain using electroencephalography. Sci Rep. 2015; 5: 15924. PMID: 26525705
  63. Vetluzhskaya M.V., et al. Characteristics of Emotional Intelligence and Empathic Abilities in Medical Students. Integration of Education. 2019; 3 (96): 404—422 (In Russian). eLIBRARY ID: 41041581
  64. Zorin K.V. Ethical and deontological education and professional development of medical students: aspects of the problem. Medical Education and Professional Development. 2020; 3 (39): 187—193 (In Russian). eLIBRARY ID: 44034339
  65. Kubekova A.S., Sergeeva M.A. Relationship of empathy level and personal properties in medical students. World of Science. Pedagogy and psychology. 2022; 3: (In Russian). eLIBRARY ID: 49447208
  66. Fragkos K.C., Crampton P.E.S. The effectiveness of teaching clinical empathy to medical students: A systematic review and meta-analysis of randomized controlled trials. Acad Med. 2020; 95 (6): 947—957. PMID: 31688037
  67. Fernandez A.V., Zahavi D. Basic empathy: Developing the concept of empathy from the ground up. Int J Nurs Stud. 2020; 110: 103695. PMID: 32736251
  68. Laughey W.F., et al. Empathy in medical education: Its nature and nurture — a qualitative study of the views of students and tutors. Med Sci Educ. 2021; 31 (6): 1941—1950. PMID: 34692227
  69. Bas-Sarmiento P., et al. Empathy training in health sciences: A systematic review. Nurse Educ Pract. 2020; 44: 102739. PMID: 32220796
  70. Bearman M., Palermo C., Allen L.M., Williams B. Learning empathy through simulation: A systematic literature review. Simul Healthc. 2015; 10 (5): 308—19. PMID: 26426561
  71. Chua J.Y.X., Ang E., Lau S.T.L., Shorey S. Effectiveness of simulation-based interventions at improving empathy among healthcare students: A systematic review and meta-analysis. Nurse Educ Today. 2021; 104: 105000. PMID: 34146845
  72. Ekström S., Pareto L. The dual role of humanoid robots in education: As didactic tools and social actors. Education and Information Technologies. 2022; 27: 12609—12644. DOI: 10.1007/s10639-022-11132-2
  73. Kim J., Im I. Anthropomorphic response: Understanding interactions between humans and artificial intelligence agents. Computers in Human Behavior. 2023; 139: 107512. DOI: 10.1016/j.chb.2022.107512
  74. Seredkina E.V. Philosophical foundations of applied anthropomorphism in social robotics. Technologos. 2020; 4: 56—63 (In Russian). eLIBRARY ID: 44620409
  75. Park S., Whang M. Empathy in human-robot interaction: Designing for social robots. Int J Environ Res Public Health. 2022; 19 (3): 1889. PMID: 35162909
  76. Wang T., Zheng P., Li S., Wang L. Multimodal human—robot interaction for human-centric smart manufacturing: A survey. Advanced Intelligent Systems. 2024; 6: 2300359. DOI: 10.1002/aisy.202300359
  77. Su H., et al. Recent advancements in multimodal human-robot interaction. Front Neurorobot. 2023; 17: 1084000. PMID: 37250671
  78. Novikov G.A., et al. The problem of personalised doctor-patient communication in palliative medicine. Palliative Medicine and Rehabilitation. 2022; 4: 5—11 (In Russian). eLIBRARY ID: 50108383
  79. Rashid M.A., et al. Practical aspects of personalized doctor-patient communication in palliative medicine. Palliative Medicine and Rehabilitation. 2023; 1: 5—14 (In Russian). eLIBRARY ID: 53837587

Received

May 31, 2024

Accepted

October 22, 2024

Published on

December 17, 2024