DOI:

10.37988/1811-153X_2024_3_125

Population-epidemiological randomized clinical study of harmonious development of the lower face height by 3D cephalometry. Part I. Individual rate

Authors

  • I.P. Panaiotov 1, postgraduate at the Orthodontics Department
    ORCID: 0000-0001-7790-4559
  • A.B. Slabkovskaya 1, Doctor of Science in Medicine, full professor of the Orthodontics Department
    ORCID: 0000-0001-8154-5093
  • R.R. Magomedov 1, postgraduate at the Orthodontics Department
    ORCID: 0000-0002-8445-1540
  • L.S. Persin 1, Russian Academy of Medical Science corresponding member, Doctor of Science in Medicine, full professor of the Orthodontics Department
    ORCID: 0000-0001-9971-5054
  • 1 Moscow State University of Medicine and Dentistry, 127473, Moscow, Russia

Abstract

Objective: To assess the average values of parameter ranges across the population that may influence the vertical dimensions of the lower face height (LFH) in individuals with normal occlusion (NO), considering different types of craniofacial growth, with the aim of establishing adequate cephalometric standards for reference in orthodontic therapy and orthopedic rehabilitation.
Materials and methods.
The study population consisted of male and female subjects aged 16—45 years with normal occlusion and different cranial growth types, who underwent general diagnostics of the dentofacial system (DFS) and temporomandibular joint (TMJ). A 3D cephalometric calculation and analysis of 35 CBCT scans were conducted. The study focused on analyzing parameters characterizing the morphological features of the facial skull using 3D cephalometry.
Results.
 When comparing the obtained values with the norm, 6 significant parameters influencing LFH were identified. In individuals with a horizontal cranial growth type, two parameters had statistically significant effects: the posterior height of the lower face (SNP—Go) and the occlusal plane angle relative to the skull base (Ocp/NSL), with p<0.05. One parameter, the lower face height angle between points SNA/Sat/Me, had a highly statistically significant influence, with p<0.01. In individuals with a vertical cranial growth type, two parameters had highly statistically significant effects: the incisal-tuberal (alveolar) wall of the maxilla (IMS—MT) and the lower face height angle by Ricketts (Xi), with p<0.01. Additionally, one parameter, the lower face height angle between points SNA/Sat/Me, had a statistically significant influence with p<0.05. Conclusions: The study demonstrated differences in the identified parameters in individuals with normal occlusion. Using the proposed analysis method, it is possible to determine the average parameter ranges across the population that influence the vertical dimensions of the lower face height in individuals with normal occlusion, considering different cranial growth types. The cephalometric analysis of 35 CBCT scans confirmed that normal occlusion of teeth is not associated with cranial growth type.

Key words:

vertical occlusal dimension, maxillary triangle (MT), cranial growth, 3D cephalometry.

For Citation

[1]
Panaiotov I.P., Slabkovskaya A.B., Magomedov R.R., Persin L.S. Population-epidemiological randomized clinical study of harmonious development of the lower face height by 3D cephalometry. Part I. Individual rate. Clinical Dentistry (Russia).  2024; 27 (3): 125—133. DOI: 10.37988/1811-153X_2024_3_125

References

  1. Persin L.S., Porokhin A.Yu., Satushieva M.A., Kaplan D.B. Evaluation of dentofacial system status according referent lines by mean of computer program. Orthodontics. 2019; 1 (85): 4—10 (In Russian). eLIBRARY ID: 41121589
  2. Ryakhovsky A.N., Dedkov D.N., Gvetadze R.Sh., Boytsova E.A. Cephalometric estimation of vertical dimension of occlusion. Stomatology. 2017; 1: 63—71 (In Russian). eLIBRARY ID: 28795337
  3. Slabkovskaya A.B., Panaiotov I.P. Multidisciplinary treatment in contemporary restorative dentistry. Orthodontics. 2014; 2 (66): 39—47 (In Russian). eLIBRARY ID: 23216334
  4. Zhulev E.N., Kupriyanova O.G., Nikolaeva E.Y. Comparative characteristics of the facial skeleton malocclusion in the first and second class engle. Fundamental research. 2015; 1—10: 2052—2056 (In Russian). eLIBRARY ID: 23836213
  5. Merzhvinskay E.I., Slabkovskay A.B., Drobysheva N.S., Vasiljev A.J., Persin L.S., Drobyshev A.J., Petrovskay V.V., Kurakin K.A. Gender features of harmonious faces. Orthodontics. 2012; 2 (58): 10—18 (In Russian). eLIBRARY ID: 22507530
  6. Suda N. [Growth of maxillo-facial region and related anomalies]. Clin Calcium. 2017; 27 (10): 1357—1362 (In Japanese). PMID: 28947685
  7. Du W., Bhojwani A., Hu J.K. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci. 2021; 13 (1): 4. PMID: 33547271
  8. Ornitz D.M., Marie P.J. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015; 29 (14): 1463—86. PMID: 26220993
  9. Katsube M., Yamada S., Utsunomiya N., Yamaguchi Y., Takakuwa T., Yamamoto A., Imai H., Saito A., Vora S.R., Morimoto N. A 3D analysis of growth trajectory and integration during early human prenatal facial growth. Sci Rep. 2021; 11 (1): 6867. PMID: 33767268
  10. Ross A.H., Williams S.E. Craniofacial growth, maturation, and change: teens to midadulthood. J Craniofac Surg. 2010; 21 (2): 458—61. PMID: 20489450
  11. Matthews H.S., Mahdi S., Penington A.J., Marazita M.L., Shaffer J.R., Walsh S., Shriver M.D., Claes P., Weinberg S.M. Using data-driven phenotyping to investigate the impact of sex on 3D human facial surface morphology. J Anat. 2023; 243 (2): 274—283. PMID: 36943032
  12. Rebibo M., Darmouni L., Jouvin J., Orthlieb J.D. Vertical dimension of occlusion: the keys to decision. International Journal of Stomatology & Occlusion Medicine. 2009; 2: 147—159. DOI: 10.1007/s12548-009-0027-7
  13. Shen Y.F., Wei M.C., Li H.P., Pan Y.H., Hong H.H., Chen C.C., Kuo S.B., Ho C.Y., Chang C.T., Huang Y.F. Vertical dimension of occlusion related to mandibular movement during swallowing. Biomed J. 2021; 44 (2): 217—222. PMID: 33863681
  14. Naeem S., Qamar Kh., Khan M. Determination of lower facial height through mandibular morphology using lateral cephalometry. Pakistan Oral & Dental Journal. 2013; 2 (33): 384—388.
  15. Wang M.F., Otsuka T., Akimoto S., Sato S. Vertical facial height and its correlation with facial width and depth: Three-dimensional cone beam computed tomography evaluation based on dry skulls. Int J Stomatol Occlusion Med. 2013; 6 (4): 120—129. PMID: 24273616
  16. Basnet B.B., Singh R.K., Parajuli P.K., Shrestha P. Correlation between facial measurements and occlusal vertical dimension: An anthropometric study in two ethnic groups of Nepal. International Journal of Dental Sciences and Research. 2014; 2 (6): 171—174. DOI: 10.12691/ijdsr-2-6-13
  17. Wiro W., Ike H. Cephalometric analysis for accurately determining the vertical dimension: a case report. Journal of Dentomaxillofacial Science. 2017; 2 (1): 52—57. DOI: 10.15562/jdmfs.v2i1.458
  18. Ousehal L., Jouhadi E., Bennani A. Vertical dimension of occlusion (VDO): cephalometric norms for a Moroccan population. J Orofac Orthop. 2016; 77 (1): 39—44. PMID: 26747660
  19. Burt A.L., Crewther D.P. The 4D space-time dimensions of facial perception. Front Psychol. 2020; 11: 1842. PMID: 32849084
  20. Vinnakota D.N., Kanneganti K.C., Pulagam M., Keerthi G.K. Determination of vertical dimension of occlusion using lateral profile photographs: A pilot study. J Indian Prosthodont Soc. 2016; 16 (4): 323—327. PMID: 27746594
  21. Subramanian A.K., Chen Y., Almalki A., Sivamurthy G., Kafle D. Cephalometric analysis in orthodontics using artificial intelligence — A comprehensive review. Biomed Res Int. 2022; 2022: 1880113. PMID: 35757486
  22. Schwendicke F., Chaurasia A., Arsiwala L., Lee J.H., Elhennawy K., Jost-Brinkmann P.G., Demarco F., Krois J. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Investig. 2021; 25 (7): 4299—4309. PMID: 34046742
  23. Rousseau M., Retrouvey J.M. Machine learning in orthodontics: Automated facial analysis of vertical dimension for increased precision and efficiency. Am J Orthod Dentofacial Orthop. 2022; 161 (3): 445—450. PMID: 35184845
  24. Lockerman L.Z., Hauser R. The association between mandibular position to cervical spine and internal jugular vein diameters in upright position. Have we been ignoring critical generators of head and neck pathology? — Cranio. 2023; 41 (5): 403—406. PMID: 37565696
  25. Sterenborg B.A.M.M., Maal T.J.J., Vreeken R., Loomans B.A.C., Huysmans M.D.N.J.M. The facial effects of tooth wear rehabilitation as measured by 3D stereophotogrammetry. J Dent. 2018; 73: 105—109. PMID: 29689294
  26. Fabbri G., Sorrentino R., Cannistraro G., Mintrone F., Bacherini L., Turrini R., Bombardelli T., Nieri M., Fradeani M. Increasing the vertical dimension of occlusion: A multicenter retrospective clinical comparative study on 100 patients with fixed tooth-supported, mixed, and implant-supported full-arch rehabilitations. Int J Periodontics Restorative Dent. 2018; 38 (3): 323—335. PMID: 29641621
  27. Goldstein G., Goodacre C., MacGregor K. Occlusal vertical dimension: Best evidence consensus statement. J Prosthodont. 2021; 30 (S1): 12—19. PMID: 33783090
  28. Galella S., Chow D., Jones E., Enlow D., Masters A. Guiding atypical facial growth back to normal. Part 1: Understanding facial growth. Int J Orthod Milwaukee. 2011; 22 (4): 47—54. PMID: 22360082

Received

June 28, 2023

Accepted

August 30, 2024

Published on

October 2, 2024