DOI:

10.37988/1811-153X_2024_2_76

Antimicrobial activity of novel curcumin-based photosensitizer in liposomal form against Staphylococcus aureus strain: in vitro study

Authors

  • I.Yu. Chausskaya 1, PhD in Medical Sciences, associate professor of the Maxillofacial and plastic surgery Department
    ORCID: 0000-0001-9674-1919
  • A.Yu. Drobyshev 1, PhD in Medical Sciences, full professor of the Maxillofacial and plastic surgery Department
    ORCID: 0000-0002-1710-6923
  • D.E. Nikogosova 1, senior laboratory technician at the Maxillofacial and plastic surgery Department
    ORCID: 0000-0003-3777-511X
  • V.N. Tsarev 1, PhD in Medical Sciences, full professor of the Microbiology, virology, immunology department, director of the Medico-dental research Institute
    ORCID: 0000-0002-3311-0367
  • M.S. Podporin 1, PhD in Medical Sciences, researcher at the Molecular biology research Laboratory of the Medico-dental research Institute
    ORCID: 0000-0001-6785-0016
  • M.S. Amrieva 1, postgraduate at the Maxillofacial and plastic surgery Department
    ORCID: 0000-0003-1981-6002
  • V.V. Kirilenko 1, resident at the Maxillofacial and plastic surgery Department
    ORCID: 0009-0003-1114-6697
  • A.M. Kulichenko 2, engineer
    ORCID: 0000-0002-6946-006X
  • R.Z. Saberov 1, assistant at the Maxillofacial and plastic surgery Department
    ORCID: 0009-0003-4987-1704
  • 1 Russian University of Medicine, 127473, Moscow, Russia
  • 2 Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia

Abstract

Photodynamic therapy (PDT) is applied in many medical fields. It is based on photosensitizer (PS) delivery within pathological cells and subsequent irradiation of appropriate laser leading to selective cell death. The creation of such forms of photosensitizers providing most efficient PS delivery into the cell is still relevant. The novel liposomal form which increases the bioavailability of curcumin-based photosensitizer is developed.
Materials and methods.
Antimicrobial activity of PS in liposomal form with curcumin at a concentration of 1% (group I) and 2% (group II) after 445 nm laser exposure against S. aureus strain has been analyzed during the research. The degree of photobleaching of the cell culture was assessed, and the optical density of the microbial mixture was measured after irradiation during 48-hour cultivation.
Results.
The photobleaching level of group II exceeded the threshold of 50% and reached 54.2±0.4%, which is significantly more than 30.2±0.2% for the sample of group I. When cultivating a pure culture the optical density of the microbial suspension at the development point α (10th hour) was 4.3±0.3 MFU, at the development point β (12th hour) — 5±0.3 MFU. When cultivating a sample of group I the optical density of the microbial suspension at the development point α (10th hour) was 3.54 MFU, at the development point β (12th hour) — 4.76 MFU. For group II the optical density of the microbial suspension at the development point α (12th hour) was 3.4 MFU, at the development point β (14th hour) — 4.0 MFU, which is statistically significantly lower than in group I.
Conclusion.
Photoactivation of PS with 2% curcumin in liposomes by laser radiation leads to a more pronounced decrease in the intensity of microorganism growth compared to PS with 1% curcumin. The effect of laser on PS with 2% curcumin triggers more active processes of microbial cell death. The novel liposomal form of PS with curcumin has shown its promise for further investigation and implementation in dental clinical practice.

Key words:

photosensitizer, curcumin, liposomes, fluorescence spectroscopy

For Citation

[1]
Chausskaya I.Yu., Drobyshev A.Yu., Nikogosova D.E., Tsarev V.N., Podporin M.S., Amrieva M.S., Kirilenko V.V., Kulichenko A.M., Saberov R.Z. Antimicrobial activity of novel curcumin-based photosensitizer in liposomal form against Staphylococcus aureus strain: in vitro study. Clinical Dentistry (Russia).  2024; 27 (2): 76—82. DOI: 10.37988/1811-153X_2024_2_76

References

  1. Chau L., Jabara J.T., Lai W., Svider P.F., Warner B.M., Lin H.S., Raza S.N., Fribley A.M. Topical agents for oral cancer chemoprevention: A systematic review of the literature. Oral Oncol. 2017; 67: 153—159. PMID: 28351570
  2. Naumovich S., Plavsky V., Kuvshinov A. Antimicrobial photodynamic therapy: advantages, disadvantages and development prospects. Sovremennaya stomatologiya (Belarus). 2020; 1 (78): 11—16 (In Russian). eLIBRARY ID: 42642360
  3. Warrier A., Mazumder N., Prabhu S., Satyamoorthy K., Murali T.S. Photodynamic therapy to control microbial biofilms. Photodiagnosis Photodyn Ther. 2021; 33: 102090. PMID: 33157331
  4. de Souza da Fonseca A., de Paoli F., Mencalha A.L. Photodynamic therapy for treatment of infected burns. Photodiagnosis Photodyn Ther. 2022; 38: 102831. PMID: 35341978
  5. Kolarikova M., Hosikova B., Dilenko H., Barton-Tomankova K., Valkova L., Bajgar R., Malina L., Kolarova H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med Res Rev. 2023; 43 (4): 717—774. PMID: 36757198
  6. Chen T., Yang D., Lei S., Liu J., Song Y., Zhao H., Zeng X., Dan H., Chen Q. Photodynamic therapy-a promising treatment of oral mucosal infections. Photodiagnosis Photodyn Ther. 2022; 39: 103010. PMID: 35820633
  7. Potapovich A.I., Yassen A.T., Kostyuk V.A. The natural chemopreventive agent curcumin can function as an effective UV photosensitizer. In: abstracts of the “Physical and chemical biology as the basis of modern medicine” conference. Minsk: Belorussian State Medical University, 2021. Pp. 230—232 (In Russian). https://tinyurl.com/4becb68e
  8. Utz S.R., Talnikova E.E., Sultanakhmedov E.S., Myasnikova T.D., Safonov V.A., Popovicheva O.A. Nail psoriasis: the first experience of photodynamic curcumin therapy. Saratov Journal of Medical Scientific Research. 2017; 3: 600—604 (In Russian). eLIBRARY ID: 32484250
  9. Mirzaei H., Shakeri A., Rashidi B., Jalili A., Banikazemi Z., Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017; 85: 102—112. PMID: 27930973
  10. Gandek T.B., van der Koog L., Nagelkerke A. A comparison of cellular uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and extracellular vesicles. Adv Healthc Mater. 2023; 12 (25): e2300319. PMID: 37384827
  11. Jaudoin C., Grillo I., Cousin F., Gehrke M., Ouldali M., Arteni A.A., Picton L., Rihouey C., Simelière F., Bochot A., Agnely F. Hybrid systems combining liposomes and entangled hyaluronic acid chains: Influence of liposome surface and drug encapsulation on the microstructure. J Colloid Interface Sci. 2022; 628 (Pt B): 995—1007. PMID: 36041247
  12. Sheikholeslami B., Lam N.W., Dua K., Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci. 2022; 300: 120574. PMID: 35469915
  13. Ghodasara A., Raza A., Wolfram J., Salomon C., Popat A. Clinical translation of extracellular vesicles. Adv Healthc Mater. 2023; 12 (28): e2301010. PMID: 37421185
  14. Akkewar A., Mahajan N., Kharwade R., Gangane P. Liposomes in the targeted gene therapy of cancer: A critical review. Curr Drug Deliv. 2023; 20 (4): 350—370. PMID: 35593362
  15. Raza F., Evans L., Motallebi M., Zafar H., Pereira-Silva M., Saleem K., Peixoto D., Rahdar A., Sharifi E., Veiga F., Hoskins C., Paiva-Santos A.C. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater. 2023; 157: 1—23. PMID: 36521673
  16. Salkho N.M., Awad N.S., Pitt W.G., Husseini G.A. Photo-induced drug release from polymeric micelles and liposomes: Phototriggering mechanisms in drug delivery systems. Polymers (Basel). 2022; 14 (7): 1286. PMID: 35406160

Received

November 4, 2023

Accepted

April 11, 2024

Published on

June 28, 2024