DOI:

10.37988/1811-153X_2023_3_134

Evaluation of the size and shape of powder components for air polishing of the surface of hard tooth tissue

Authors

  • S.N. Razumova 1, PhD in Medical Sciences, full professor of the Dentistry diseases propaedeutics Department
    ORCID ID: 0000-0002-9533-9204
  • Z.T. Aymaletdinova 1, assistant at the Dentistry diseases propaedeutics Department
    ORCID ID: 0000-0002-6187-564X
  • A.S. Brago 1, PhD in Medical sciences, associate professor of the Dentistry diseases propaedeutics Department
    ORCID ID: 0000-0001-8947-4357
  • M.A.K. Thabet 1, postgraduate at the Dentistry diseases propaedeutics Department
    ORCID ID: 0000-0001-9081-1007
  • A.V. Rebriy 1, assistant at the Dentistry diseases propaedeutics Department
    ORCID ID: 0000-0002-5062-5979
  • A.S. Manvelyan 1, PhD in Medical Sciences, senior researcher of the Dentistry diseases propaedeutics Department
    ORCID ID: 0000-0002-5769-3843
  • 1 RUDN University, 117198, Moscow, Russia

Abstract

Water-air polishing is an effective method for removing biofilm from all tooth surfaces in professional oral hygiene. A variety of abrasive powders have been developed for this purpose. These powders are based on sodium bicarbonate, calcium carbonate, glycine or erythritol. Depending on the granule size and shape, these powders can increase or decrease dental hard tissue surface roughness. Objective — profilometric study of the size and shape of granules of professional oral hygiene abrasives.
Materials and methods.
For the study, five samples of abrasive powders were selected: 1) Air Profi Comfort (Omega-Dent, Russia) made of sodium bicarbonate (40 μm); 2) Flow-Cleans Pro (TechnoDent, Russia) made of sodium bicarbonate (50—60 μm) and calcium carbonate (50—70 μm); 3) Air-Cleans Perio (VladMiVa, Russia) made of glycine (25 microns); 4) Airflow Plus (EMS, Switzerland) made of erythritol (14 μm); 5) Rhapsody Flow (Queen Dental, Germany) made of sodium bicarbonate (40 μm). Scanning and determination of the average particle size as well as the shape of individual granules on an optical 3D profilometer were performed.
Results.
In samples 1—4 the shape of particles corresponds to the manufacturer’s statement. The average size of abrasive granules in several samples exceeded the values specified in the instructions: sample 1 — 71.4 μm, sample 4 — 41.7 μm, sample 5 — 79.4 μm.
Conclusion.
Based on profilometry data, it appears that manufacturers’ specified average particle sizes of abrasive powders are not always accurate.

Key words:

profilometry, air polishing, glycine, sodium bicarbonate, erythritol

For Citation

[1]
Razumova S.N., Aymaletdinova Z.T., Brago A.S., Thabet M.A.K., Rebriy A.V., Manvelyan A.S. Evaluation of the size and shape of powder components for air polishing of the surface of hard tooth tissue. Clinical Dentistry (Russia).  2023; 26 (3): 134—139. DOI: 10.37988/1811-153X_2023_3_134

References

  1. Aleksandrov M.T., Olesova V.N., Dmitrieva E.F., Namiot E.D., Artyomova O.A., Akhmedov A.N., Razumova S.N. Integrated assessment of hygienic condition of the oral cavity. Stomatology. 2020; 4: 21—26 (In Russian). eLIBRARY ID: 43137883
  2. Razumova S.N., Brago A.S., Khaskhanova L.M., Tikhonova S.N., Bait Said O. Modern methods of prevention of dental diseases. Medical alphabet. 2018; 24 (361): 69—70 (In Russian). eLIBRARY ID: 36546519
  3. Razumova S.N., Brago A.S., Manvelyan A.S., Kozlova Y.S., Volovikov O.I., Ruda O.R. The effectiveness use of toothpaste with anti-carious effect. Medical alphabet. 2021; 24: 14—18 (In Russian). eLIBRARY ID: 46579074
  4. Razumova S.N., Kozlova Y.S., Brago A.S., Razumov N.M., Glybina T.A. Study of the effect of using a hard toothbrush with a high abrasive toothpaste according to profilometry data. Medical alphabet. 2021; 38: 41—44 (In Russian). eLIBRARY ID: 47558505
  5. Mkhoyan G.R., Razumova S.N., Volkov A.G., Dikopova N.Zh., Volovikov O.I., Akhmedbaeva S.K.S. Experience in the use of dental plaque removal using low-frequency ultrasound and ozonated contact medium in the treatment of catarrhal gingivitis in young people. Russian Journal of Dentistry. 2021; 2: 145—150 (In Russian). eLIBRARY ID: 48114681
  6. Thabet M.A.K., Razumova S.N., Brago A.S., Filimonova O.V., Rebriy A.V., Adzhieva E.V. Different methods of professional oral hygiene.Literature review. Medical alphabet. 2022; 7: 15—19 (In Russian). eLIBRARY ID: 48779659
  7. Cobb C.M., Daubert D.M., Davis K., Deming J., Flemmig T.F., Pattison A., Roulet J.F., Stambaugh R.V. Consensus conference findings on supragingival and subgingival air polishing. Compend Contin Educ Dent. 2017; 38 (2): e1-e4. PMID: 28156118
  8. Poormoradi B., Tamasoki S., Shahbazi A., Hooshyarfard A., Vahdatinia F., Behgozin F., Tapak L. The comparison of two professional prophylaxis systems in plaque removal and debonding of orthodontic brackets. J Indian Soc Periodontol. 2018; 22 (5): 414—418. PMID: 30210190
  9. Camboni S., Donnet M. Tooth surface comparison after air polishing and rubber cup: A scanning electron microscopy study. J Clin Dent. 2016; 27 (1): 13—18. PMID: 28390211
  10. Graumann S.J., Sensat M.L., Stoltenberg J.L. Air polishing: a review of current literature. J Dent Hyg. 2013; 87 (4): 173—80. PMID: 23986410
  11. Fu J.H., Wong L.B., Tong H.J., Sim Y.F. Conventional versus comprehensive dental prophylaxis: comparing the clinical outcomes between rubber cup and air polishing and the importance of plaque disclosure. Quintessence Int. 2021; 0 (0): 0. PMID: 33491396
  12. Park B.Y., Kim M., Park J., Jeong J.H., Noh H. Research on dental plaque removal methods for efficient oral prophylaxis: With a focus on air polishing and rubber cup polishing. Int J Dent Hyg. 2021; 19 (3): 255—261. PMID: 33217770
  13. Kaur A., Bhardwaj A., Kansil S., Kaur R., Kaur S., Gambhir R.S. Efficacy evaluation of rubber cup and air polishing techniques using glycine in plaque and stain removal A clinical trial. J Family Med Prim Care. 2021; 10 (2): 636—641. PMID: 34041053
  14. Janiszewska-Olszowska J., Drozdzik A., Tandecka K., Grocholewicz K. Effect of air-polishing on surface roughness of composite dental restorative material comparison of three different air-polishing powders. BMC Oral Health. 2020; 20 (1): 30. PMID: 32000753
  15. Sugiyama T., Kameyama A., Enokuchi T., Haruyama A., Chiba A., Sugiyama S., Hosaka M., Takahashi T. Effect of professional dental prophylaxis on the surface gloss and roughness of CAD/CAM restorative materials. J Clin Exp Dent. 2017; 9 (6): e772-e778. PMID: 28638554
  16. Németh K.D., Haluszka D., Seress L., Lovász B.V., Szalma J., Lempel E. Effect of air-polishing and different post-polishing methods on surface roughness of nanofill and microhybrid resin composites. Polymers (Basel). 2022; 14 (9): 1643. PMID: 35566812
  17. Bühler J., Amato M., Weiger R., Walter C. A systematic review on the effects of air polishing devices on oral tissues. Int J Dent Hyg. 2016; 14 (1): 15—28. PMID: 25690301
  18. Kimyai S., Pournaghi-Azar F., Daneshpooy M., Abed Kahnamoii M., Davoodi F. Effect of two prophylaxis methods on marginal gap of Cl Vresin-modified glass-ionomer restorations. J Dent Res Dent Clin Dent Prospects. 2016; 10 (1): 23—9. PMID: 27092211
  19. Barnes C.M., Covey D., Watanabe H., Simetich B., Schulte J.R., Chen H. An in vitro comparison of the effects of various air polishing powders on enamel and selected esthetic restorative materials. J Clin Dent. 2014; 25 (4): 76—87. PMID: 26054183
  20. Wolgin M., Frankenhauser A., Shakavets N., Bastendorf K.D., Lussi A., Kielbassa A.M. A randomized controlled trial on the plaque-removing efficacy of a low-abrasive air-polishing system to improve oral health care. Quintessence Int. 2021; 52 (9): 752—762. PMID: 34269042
  21. Park E.J., Kwon E.Y., Kim H.J., Lee J.Y., Choi J., Joo J.Y. Clinical and microbiological effects of the supplementary use of an erythritol powder air-polishing device in non-surgical periodontal therapy: a randomized clinical trial. J Periodontal Implant Sci. 2018; 48 (5): 295—304. PMID: 30405937
  22. Hashino E., Kuboniwa M., Alghamdi S.A., Yamaguchi M., Yamamoto R., Cho H., Amano A. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol Oral Microbiol. 2013; 28 (6): 435—51. PMID: 23890177
  23. Sinjari B., D’Addazio G., Bozzi M., Santilli M., Traini T., Murmura G., Caputi S. SEM analysis of enamel abrasion after air polishing treatment with erythritol, glycine and sodium bicarbonate. Coatings. 2019; 9 (9): 549. DOI: 10.3390/coatings9090549
  24. Bühler J., Schmidli F., Weiger R., Walter C. Analysis of the effects of air polishing powders containing sodium bicarbonate and glycine on human teeth. Clin Oral Investig. 2015; 19 (4): 877—85. PMID: 25240922

Received

June 27, 2023

Accepted

August 17, 2023

Published on

September 24, 2023