DOI:

10.37988/1811-153X_2023_3_46

Denticles: study diagnostic and perspectives of treatment (a review, part II)

Authors

  • V.A. Osipova 1, PhD in Medical sciences, associate professor of the Dentistry diseases propaedeutics Department
    ORCID: 0000-0002-1989-5460
  • V.A. Molokova 1, dentist
    ORCID: 0000-0001-8219-8169
  • I.N. Antonova 1, PhD in Medical Sciences, full professor of the Dentistry diseases propaedeutics Department
    ORCID: 0000-0003-2543-6137
  • A.A. Kolyada 1, 5th year student
    ORCID: 0000-0003-3437-4716
  • 1 Pavlov University, 197022, Saint-Petersburg, Russia

Abstract

The problem of the formation of calcifications, denticles in the pulp, was described as early as the 19th century. Initially, the term “dental pulp nodules” was used, later it was changed to “pulp stones” or “denticles”. In modern foreign studies, the terms “pulp stone” and “denticle” are used. Thanks to new research methods, it became possible to study the chemical composition, shape and structure of denticles. In recent years, diagnostic methods have been improved, and methods for safely extracting denticles during endodontic treatment have appeared. The relevance of the study is due to the insufficient number of domestic studies on the diagnosis and treatment of denticles. The purpose of the study is to review studies on modern methods of diagnosis and treatment of denticles.
Conclusion.
Knowledge of the clinical problems associated with denticles, modern methods of diagnosis and treatment can help the dental practitioner achieve successful results. Diagnosis of pulpal stones may be useful for early detection of calcifications in other parts of the body, including the cardiovascular system and kidneys.

Key words:

denticle, pulp calcification, pulp stone, diagnosis, treatment

For Citation

[1]
Osipova V.A., Molokova V.A., Antonova I.N., Kolyada A.A. Denticles: study diagnostic and perspectives of treatment (a review, part II). Clinical Dentistry (Russia).  2023; 26 (3): 46—51. DOI: 10.37988/1811-153X_2023_3_46

References

  1. Pietrzycka K., Pawlicka H. Clinical aspects of pulp stones: A case report series. Dent Med Probl. 2020; 57 (2): 213—220. PMID: 32603035
  2. Kalaji M.N., Habib A.A., Alwessabi M. Radiographic assessment of the prevalence of pulp stones in a Yemeni population sample. Eur Endod J. 2017; 2 (1): 1—6. PMID: 33403344
  3. Milcent C.P.F., da Silva T.G., et al. Morphologic, structural, and chemical properties of pulp stones in extracted human teeth. J Endod. 2019; 45 (12): 1504—1512. PMID: 31757339
  4. Memon M., Kalhoro F.A., Shams S., Arain S. Pulp stone: a study on radiographic assessment of pulp stone. The Professional Medical Journal. 2018; 25 (7): 992—996. DOI: 10.29309/TPMJ/18.3756
  5. Salter S.J.A. On the Intrinsic calcification of the permanent tooth pulp, as constantly associated with dental caries. Am J Dent Sci. 1856; 6 (3): 337—355. PMID: 30751379
  6. Bykov V.L. Histology and embryonic development of the organs of the human oral cavity. St. Petersburg: Spec. lit., 2014. Pp. 228—230 (In Russian).
  7. Ivanauskaitė D., Kubiliūtė D., et al. Prevalence of pulp stones in molars based on bitewing and periapical radiographs. Stomatologija. 2021; 23 (1): 9—15. PMID: 34528902
  8. Thapa V.B., Rana S., Bhattarai N. Assessment of prevalence of dental pulp stones in patients undergoing orthodontic treatment. Orthodontic Journal of Nepal. 2021; 11 (2): 63—66. DOI: 10.3126/ojn.v11i2.43280
  9. Vitali F.C., Cardoso I.V., et al. Association between orthodontic force and dental pulp changes: A systematic review of clinical and radiographic outcomes. J Endod. 2022; 48 (3): 298—311. PMID: 34890594
  10. Jannati R., Afshari M., et al. Prevalence of pulp stones: A systematic review and meta-analysis. J Evid Based Med. 2019; 12 (2): 133—139. PMID: 30461204
  11. Alaajam W.H., Saleh A.A., et al. Incidence and distribution of pulp stones among Southern Saudi Arabian sub-population. SAGE Open Med. 2021; 9: 20503121211062796. PMID: 34987815
  12. Chen G., Huang L.G., Yeh P.C. Detecting calcified pulp stones in patients with periodontal diseases using digital panoramic and periapical radiographies. J Dent Sci. 2022; 17 (2): 965—972. PMID: 35756760
  13. Sandeepa N.C., Ajmal M., Deepika N. A retrospective panoramic radiographic study on prevalence of pulp stones in South Karnataka population. World Journal of Dentistry. 2016; 7 (1): 14—17. DOI: 10.5005/jp-journals-10015-1356
  14. Babu S.J., Swarnalatha C., et al. Pulp stones as risk predictors for coronary artery disease. Int J Prev Med. 2020; 11: 7. PMID: 32089807
  15. Ravanshad S., Khayat S., Freidonpour N. The prevalence of pulp stones in adult patients of Shiraz Dental School, a radiographic assessment. J Dent (Shiraz). 2015; 16 (4): 356—61. PMID: 26636125
  16. Nachiappan S., Chandran A., et al. Pulp stones: Diagnostic significance in early diagnosis and radiographic correlation with ischemic heart diseases. Indian J Radiol Imaging. 2021; 31 (2): 277—283. PMID: 34556908
  17. Huang L.G., Chen G. A histological and radiographic study of pulpal calcification in periodontally involved teeth in a Taiwanese population. J Dent Sci. 2016; 11 (4): 405—410. PMID: 30895005
  18. Shi R.T., Hou B.X. [Causes, diagnosis and treatment strategies for dental pulp calcification]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2022; 57 (3): 220—226 (In Chinese). PMID: 35279998
  19. Van der Vyver P.J., Vorster M., Jonker C.H., Potgieter N. Calcific metamorphosis a review of literature and clinical management. South African Dental Journal. 2020; 75 (6): 316—322. DOI: 10.17159/2519-0105/2020/v75no6a5
  20. Vibhute N.A., Vibhute A.H., Rajendra D.T., Bansal P.P., Mahalle A. Hard facts about stones: Pulpal calcifications: A review. Journal of Patient Care. 2016; 2 (1): 105. DOI: 10.4172/2573-4598.1000105
  21. Gabardo M.C.L., Wambier L.M., et al. Association between Pulp Stones and Kidney Stones: A Systematic Review and Meta-analysis. J Endod. 2019; 45 (9): 1099—1105.e2. PMID: 31351581
  22. Tarim Ertas E., Inci M., et al. A radiographic correlation between renal and pulp stones. West Indian Med J. 2014; 63 (6): 620—5. PMID: 25803378
  23. Timchenko E.V., Timchenko P.E., Zherdeva L.A., Volova L.T., Burda A.G. Use of Raman spectroscopy for diagnosis of disease in dental tissue. Journal of Optical Technology. 2016; 5: 59—64 (In Russian). eLIBRARY ID: 26712020
  24. Mitronin A., Burda A., Emeldyazhev I., Islamova E., Shumsky A., Supilnikov A., Volova L. The degree of calcification of the pulp of the tooth mineralization and the choice of tactics of endodontic treatment. Cathedra. Dental education. 2016; 55: 21—22 (In Russian). eLIBRARY ID: 27495263
  25. Palatyńska-Ulatowska A., Fernandes M.C., et al. The pulp stones: Morphological analysis in scanning electron microscopy and spectroscopic chemical quantification. Medicina (Kaunas). 2021; 58 (1): 5. PMID: 35056314
  26. Tassoker M., Magat G., Sener S. A comparative study of cone-beam computed tomography and digital panoramic radiography for detecting pulp stones. Imaging Sci Dent. 2018; 48 (3): 201—212. PMID: 30276157
  27. Hsieh C.Y., Wu Y.C., et al. The prevalence and distribution of radiopaque, calcified pulp stones: A cone-beam computed tomography study in a northern Taiwanese population. J Dent Sci. 2018; 13 (2): 138—144. PMID: 30895109
  28. Srivastava K.C., Shrivastava D., et al. Assessing the prevalence and association of pulp stones with cardiovascular diseases and diabetes mellitus in the Saudi Arabian population — A CBCT based study. Int J Environ Res Public Health. 2020; 17 (24): 9293. PMID: 33322604
  29. Kuzekanani M., Haghani J., Walsh L.J., Estabragh M.A. Pulp stones, prevalence and distribution in an Iranian population. J Contemp Dent Pract. 2018; 19 (1): 60—65. PMID: 29358536
  30. Yapp K.E., Brennan P., Ekpo E. Endodontic disease detection: digital periapical radiography versus cone-beam computed tomography-a systematic review. J Med Imaging (Bellingham). 2021; 8 (4): 041205. PMID: 33644251
  31. Hung K., Montalvao C., Tanaka R., Kawai T., Bornstein M.M. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofac Radiol. 2020; 49 (1): 20190107. PMID: 31386555
  32. Pauwels R. A brief introduction to concepts and applications of artificial intelligence in dental imaging. Oral Radiol. 2021; 37 (1): 153—160. PMID: 32803680
  33. Altindag A., Uzun S., Bayrakdar I.S., Celik Ö. Detecting pulp stones with automatic deep learning in bitewing radiographs: a pilot study of artificial intelligence. European Annals of Dental Sciences. 2023; 50 (1): 12—16. DOI: 10.52037/eads.2023.0004
  34. Lipatova E.V. The search for balance in endodontics. Clinical case. The process of examination and treatment of dental patients with surgical microscope and cone beam computed tomography. Endodontics Today. 2016; 2: 58—60 (In Russian). eLIBRARY ID: 27187974
  35. Patel S., Brown J., et al. Cone beam computed tomography in endodontics a review of the literature. Int Endod J. 2019; 52 (8): 1138—1152. PMID: 30868610
  36. Patil S.R., Araki K., et al. A cone beam computed tomography study of the prevalence of pulp stones in a Saudi Arabian adolescent population. Pesquisa Brasileira em Odontopediatria e Clinica Integrada. 2018; 18 (1): e3973.
  37. Sezgin G.P., Sönmez Kaplan S., Kaplan T. Evaluation of the relation between the pulp stones and direct restorations using cone beam computed tomography in a Turkish subpopulation. Restor Dent Endod. 2021; 46 (3): e34. PMID: 34513640
  38. da Silva E.J.N.L., Prado M.C., et al. Assessing pulp stones by cone-beam computed tomography. Clin Oral Investig. 2017; 21 (7): 2327—2333. PMID: 27942985
  39. Gabardo M.C.L., Kublitski P.M.O., et al. Sialometric and sialochemical analysis in individuals with pulp stones. Front Cell Dev Biol. 2020; 8: 403. PMID: 32596238
  40. Ravichandran K., Dinesh K., et al. Comparative evaluation of decalcifying agents for dissolution of pulp stones: An in vitro study. J Conserv Dent. 2022; 25 (4): 356—362. PMID: 36187864
  41. Palatyńska-Ulatowska A., Pietrzycka K., Koprowicz A. Denticles of the pulp chamber diagnostics and management. Case studies. Pomeranian Journal of Life Sciences. 2019; 65 (2): 29—36. DOI: 10.21164/pomjlifesci.580
  42. Kapetanaki I., Dimopoulos F., Gogos C. Traditional and minimally invasive access cavities in endodontics: a literature review. Restor Dent Endod. 2021; 46 (3): e46. PMID: 34513652
  43. Connert T., Zehnder M.S., Amato M., Weiger R., Kühl S., Krastl G. Microguided endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique. Int Endod J. 2018; 51 (2): 247—255. PMID: 28665514
  44. Maia L.M., de Carvalho Machado V., et al. Case reports in maxillary posterior teeth by guided endodontic access. J Endod. 2019; 45 (2): 214—218. PMID: 30711181
  45. Chen B., Szabo D., Shen Y., Zhang D., Li X., Ma J., Haapasalo M. Removal of calcifications from distal canals of mandibular molars by a non-instrumentational cleaning system: A micro-CT study. Aust Endod J. 2020; 46 (1): 11—16. PMID: 31605428

Received

May 31, 2023

Accepted

August 8, 2023

Published on

September 24, 2023