DOI:

10.37988/1811-153X_2023_2_6

The anatomo-topographic variations of the root canal orifices of the maxillary molars

Authors

  • M.A. Postnikov 1, PhD in Medical Sciences, full professor of the Therapeutic dentistry Department
    ORCID: 0000-0002-2232-8870
  • D.N. Kudryashov 1, assistant at the Therapeutic dentistry Department
    ORCID: 0000-0001-6143-357X
  • S.E. Chigarina 1, PhD in Medical Sciences, associate professor of the Therapeutic dentistry Department
    ORCID: 0000-0002-7008-5981
  • A.M. Golovachev 1, assistant at the Therapeutic dentistry Department
    ORCID: 0009-0005-8616-8211
  • 1 Samara State Medical University, 443001, Samara, Russia

Abstract

The navigation-optic approach to the determination of the root canal orifices’ location becomes beneficial in the endodontic treatment for eliminating post-treatment errors and complications afterward. This study aims at analyzing the variability of the root canal orifices’ location in the maxillary molars during endodontic treatment.
Materials and methods.
435 patients aged 18—75 with complicated caries and tooth retreatment were examined and there was conducted the endodontic treatment of 450 maxillary teeth including 301 first molars and 149 second molars. Treatment and photodocumentation of the treatment stages were performed by a dental microscope with a digital camera. The root canal orifice was defined as a cavity on the pulp chamber floor or in the fissure linking root canal orifices of a single root, that provided an opportunity for the instrumental treatment of at least 1/3 of the canal length. The root canals’ location was approved by the electronic apex location and target X-ray images.
Results.
The analysis of 450 first and second molars of the upper jaw according the photo protocols in patients at the stage of formation of endodontic access showed the configuration variability of the location of the orifices of the root canals at the bottom of the tooth cavity and made it possible to identify four navigation-anatomical types for the location of the orifices of the root canals: 1st type “mesial groove”, 2nd type “linear anatomy”, 3rd type “square anatomy”, 4th type “T-shaped anatomy”.
Conclusion.
The navigation-optical protocol will allow dentists to determine the maximum number of root canal orifices in the upper molars, excluding cases of missed canals and prevent the development of complications in the periapical tissues after obturation of a complex tooth root system.

Key words:

root canal orifices, maxillary molars, missed root canal, navigational optic approach

For Citation

[1]
Postnikov M.A., Kudryashov D.N., Chigarina S.E., Golovachev A.M. The anatomo-topographic variations of the root canal orifices of the maxillary molars. Clinical Dentistry (Russia).  2023; 26 (2): 6—15. DOI: 10.37988/1811-153X_2023_2_6

References

  1. Duncan H.F., Nagendrababu V., El-Karim I.A., Dummer P.M.H. Outcome measures to assess the effectiveness of endodontic treatment for pulpitis and apical periodontitis for use in the development of European Society of Endodontology (ESE) S3 level clinical practice guidelines: a protocol. Int Endod J. 2021; 54 (5): 646—654. PMID: 33630330
  2. Setzer F., Chogle S., Torabinedjad M. Endodontic treatment outcomes. In: Torabinejad M., Fouad A.F., Shabahang S. Endodontics. Principles and practice. Elsevier, 2021. Pp. 453—455.
  3. Abbott P.V. Pulp, root canal, and periradicular conditions. In: Ahmed H.M.A., Dummer P.M.H. Endodontic advances and evidence‐based clinical guidelines. Hoboken, NJ: John Wiley & Sons, 2022. Pp. 85-86, 93. DOI: 10.1002/9781119553939.ch4
  4. Restrepo-Restrepo F.A., Cañas-Jiménez S.J., Romero-Albarracín R.D., Villa-Machado P.A., Pérez-Cano M.I., Tobón-Arroyave S.I. Prognosis of root canal treatment in teeth with preoperative apical periodontitis: a study with cone-beam computed tomography and digital periapical radiography. Int Endod J. 2019; 52 (11): 1533—1546. PMID: 31211862
  5. Ng Y.L., Mann V., Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. Int Endod J. 2011; 44 (7): 583—609. PMID: 21366626
  6. Baruwa A.O., Martins J.N.R., Meirinhos J., Pereira B., Gouveia J., Quaresma S.A., Monroe A., Ginjeira A. The Influence of missed canals on the prevalence of periapical lesions in endodontically treated teeth: a cross-sectional study. J Endod. 2020; 46 (1): 34—39.e1. PMID: 31733814
  7. Costa F.F.N.P., Pacheco-Yanes J., Siqueira J.F. Jr, Oliveira A.C.S., Gazzaneo I., Amorim C.A., Santos P.H.B., Alves F.R.F. Association between missed canals and apical periodontitis. Int Endod J. 2019; 52 (4): 400—406. PMID: 30284719
  8. Meirinhos J., Martins J.N.R., Pereira B., Baruwa A., Gouveia J., Quaresma S.A., Monroe A., Ginjeira A. Prevalence of apical periodontitis and its association with previous root canal treatment, root canal filling length and type of coronal restoration a cross-sectional study. Int Endod J. 2020; 53 (4): 573—584. PMID: 31749154
  9. Alnowailaty Y., Alghamdi F. Prevalence of endodontically treated premolars and molars with untreated canals and their association with apical periodontitis using cone-beam computed tomography. Cureus. 2022; 14 (6): e25619. PMID: 35795507
  10. Karabucak B., Bunes A., Chehoud C., Kohli M.R., Setzer F. Prevalence of apical periodontitis in endodontically treated premolars and molars with untreated canal: a cone-beam computed tomography study. J Endod. 2016; 42 (4): 538—41. PMID: 26873567
  11. Martins J.N.R., Marques D., Silva E.J.N.L., Caramês J., Mata A., Versiani M.A. Second mesiobuccal root canal in maxillary molars-A systematic review and meta-analysis of prevalence studies using cone beam computed tomography. Arch Oral Biol. 2020; 113: 104589. PMID: 31735252
  12. Razumova S.N., Brago A.S., Barakat Kh.B., Khaskhanova L.M., Huaizi A., Nadtochiy A.G. Anatomy of first upper molar according to cone beam computed tomography among residents of Moscow Region. Medical alphabet. 2018; 2 (339): 27—28 (In Russian). eLIBRARY ID: 35040301
  13. Cantatore G., Berutti E., Castellucci A. Missed anatomy: frequency and clinical impact. In: Endodontic Topics, vol. 15, issue 1. Wiley & Sons, 2009. Pp. 3—31. DOI: 10.1111/j.1601-1546.2009.00240.x
  14. Alyamovsky V.V., Levenets O.A., Levenets A.A., Narykova S.A. Morphological basis and methodical approaches to treatment of root canals maxillary molars. Siberian Medical Review. 2013; 6 (84): 3—8 (In Russian). eLIBRARY ID: 21082580
  15. Alyamovsky V.V., Levenets O.A., Levenets A.A. Multiple anatomical variations of structure molars maxilla. Endodontics Today. 2014; 4: 22—25 (In Russian). eLIBRARY ID: 22842164
  16. Versiani M., Gleghorn B., Christie W. Root canal anatomy. In: Torabinejad M., Fouad A.F., Shabahang S. Endodontics. Principles and practice. Elsevier, 2021. Pp. 225—230.
  17. Gopikrishna V. Grosman’s enododontic practice, 14th ed. New Delhi: Wolters Kluwer, 2021. Pp. 242—244.
  18. Batukov N.M., Konstantinov A.A., Chibisova M.A. Possibilities of visualizing the tooth structure by means of cone-beam computer tomography and microscope in endodontic treatment. The Dental Institute. 2016; 3 (72): 38—41 (In Russian). eLIBRARY ID: 26602927
  19. Patel S., Brown J., Pimentel T., Kelly R.D., Abella F., Durack C. Cone beam computed tomography in Endodontics a review of the literature. Int Endod J. 2019; 52 (8): 1138—1152. PMID: 30868610
  20. Martins J.N.R., Kishen A., Marques D., Nogueira Leal Silva E.J., Caramês J., Mata A., Versiani M.A. Preferred reporting items for epidemiologic cross-sectional studies on root and root canal anatomy using cone-beam computed tomographic technology: a systematized assessment. J Endod. 2020; 46 (7): 915—935. PMID: 32387077
  21. Abella F., Kanagasingam S. Assessment of root canal anatomy. In: Patel S., Harvey S., Shemesh H., Durack C. Cone beam computed tomography in endodontics. Quintessence, 2016. Pp. 134—135.
  22. Han X., Yang H., Li G., Yang L., Tian C., Wang Y. A study of the distobuccal root canal orifice of the maxillary second molars in Chinese individuals evaluated by cone-beam computed tomography. J Appl Oral Sci. 2012; 20 (5): 563—7. PMID: 23138744
  23. Batyukov N.M., Berkhman M.V. Estimation of Endodontic Treatment Efficacy Using a Microscope. The Dental Institute. 2013; 4 (61): 82—83 (In Russian). eLIBRARY ID: 22988429
  24. Zhukova E.S., Chuikova Y.A. Quality assessment of root canal obturation using a dental microscope. Scientist (Russia). 2021; 2 (16): 23 (In Russian). eLIBRARY ID: 47378335
  25. Gopikrishna V. Grosman’s enododontic practice, 14th ed. New Delhi: Wolters Kluwer, 2021. Pp. 158—162.
  26. Gazhva S.I., Kucher V.A., Kulkova D.A. The use of optical microscopy to fix errors and adverse outcome of endodontic treatment of complicated caries. Fundamental research. 2013; 5-1: 58—62 (In Russian). eLIBRARY ID: 18967374
  27. Pawar A.M., Singh S. New classification for pulp chamber floor anatomy of human molars. J Conserv Dent. 2020; 23 (5): 430—435. PMID: 33911348
  28. Krasner P., Rankow H.J. Anatomy of the pulp-chamber floor. J Endod. 2004; 30 (1): 5—16. PMID: 14760900
  29. Griroriev S.S., Sorokoumova D.V., Chernyshova N.D., Chagay A.A., Yepishova A.A. Root canal morphology. Endodontic access. Ekaterinburg: Tirazh, 2019. 58 p. (In Russian). DOI: 10.18481/textbook_5ddce2a6a72d65.25995047
  30. Nascimento E.H.L., Gaêta-Araujo H., Andrade M.F.S., Freitas D.Q. Prevalence of technical errors and periapical lesions in a sample of endodontically treated teeth: a CBCT analysis. Clin Oral Investig. 2018; 22 (7): 2495—2503. PMID: 29354883
  31. Gopikrishna V. Grosman’s enododontic practice, 14th ed. New Delhi: Wolters Kluwer, 2021. P. 230.

Received

March 7, 2023

Accepted

June 10, 2023

Published on

July 6, 2023