DOI:

10.37988/1811-153X_2023_1_98

Comorbidity of periodontitis and herpes in the postcovid period

Authors

  • D.T. Tsinekker 1, assistant, postgraduate at the Pediatric dentistry Department
    ORCID: 0000-0001-6635-0941
  • T.N. Modina 2, PhD in Medical Sciences, full professor of the Maxillofacial dentistry Department
    ORCID: 0000-0002-2063-9464
  • I.H. Khusainov 1, postgraduate at the Biochemistry and clinical laboratory diagnostics Department
    ORCID: 0000-0003-2466-6440
  • D.A. Tsinekker 1, PhD in Medical Sciences, associate professor of the Pediatric dentistry Department
    ORCID: 0000-0002-8366-5731
  • A.A. Gaffarova 1, 5th year student
    ORCID: 0000-0001-5699-2035
  • A.I. Shaidullin 1, 5th year student
    ORCID: 0000-0002-7910-9775
  • E.V. Mamaeva 1, PhD in Medical Sciences, full professor of the Pediatric dentistry Department
    ORCID: 0000-0002-4087-2212
  • 1 Kazan State Medical University, 420012, Kazan, Russia
  • 2 Pirogov National Medical & Surgical Center, 105203, Moscow, Russia

Abstract

Improving the diagnosis and provision of dental care for patients with chronic periodontitis in combination with herpetic diseases is an urgent goal of many studies. At the same time, the COVID-19 pandemic, including the course of its post-covid period, has somewhat changed the view of specialists on the diagnosis and treatment of these comorbid diseases. The aim of the study was a metagenomic analysis of the microbiota of patients with periodontitis in combination with herpetic lesions in the postcovid period. >. 28 people aged 18—19 years were examined: 8 patients with chronic periodontitis and herpes of the lips in the postcovid period (group I), 9 patients with chronic periodontitis and herpetiform stomatitis in the postcovid period (group II), 11 conditionally healthy young people (group III, comparisons). The biomaterial was selected after professional oral hygiene from periodontal spaces; metagenomic analysis was carried out using a Nanodrop ND-2000 spectrophotometer, “Quant-iT dsDNA HS” analysis kits and “MiSeq” sequencer (Illumina). >. The structures of microbial communities of 28 samples of the microbiome of periodontal spaces were analyzed, the average length of the resulting sequences was 460 base pairs, an average of 13 974 sequences accounted for the sample, 183 phylotypes belonging to 17 types were identified, of which 46 of the most numerous phylotypes were identified. Relative to the comparison group, the experimental groups showed a tendency to decrease the normal microbiota (Streptococcus, Rothia), an increase in the biodiversity of Shannon and individual representatives of the conditionally pathogenic spectrum (group I — Prevotella, Fusobacterium, Campylobacter, Haemophilus, Selenomonas, Treponema, Tannerella and Filifactor; group II — unclassified TM7-3, Actinomyces, Veillonella, unclassified Gemellaceae, Porphyromonas). >. The features of the microbiome of the periodontal pocket in comorbid patients with periodontitis and herpes in the postcovid period were revealed, individual representatives of the microbiome were identified, their features were described, which gives grounds for the use of various treatment methods, including using minimally invasive therapy against the background of antiviral agents.

Key words:

COVID-19, periodontitis, lip herpes, herpetiform stomatitis, metagenomic analysis

For Citation

[1]
Tsinekker D.T., Modina T.N., Khusainov I.H., Tsinekker D.A., Gaffarova A.A., Shaidullin A.I., Mamaeva E.V. Comorbidity of periodontitis and herpes in the postcovid period. Clinical Dentistry (Russia).  2023; 26 (1): 98—104. DOI: 10.37988/1811-153X_2023_1_98

References

  1. Riad A., Kassem I., Stanek J., Badrah M., Klugarova J., Klugar M. Aphthous stomatitis in COVID-19 patients: Case-series and literature review. Dermatol Ther. 2021; 34 (1): e14735. PMID: 33389769
  2. Sukmanskaya G.D., Kryzhanovskaya A.V. Features of chronic recurrent aphthosis stomatitis after COVID-19. Bulletin of problems biology and medicine. 2022 (163): 208—213 (In Ukrainian). DOI: 10.29254/2077-4214-2022-1-163-208-213
  3. Steardo L., Steardo L. Jr, Zorec R., Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf). 2020; 229 (3): e13473. PMID: 32223077
  4. Slots J. Herpesviruses, the missing link between gingivitis and periodontitis? J Int Acad Periodontol. 2004; 6 (4): 113—9. PMID: 15553977
  5. Das S., Krithiga G.S., Gopalakrishnan S. Detection of human herpes viruses in patients with chronic and aggressive periodontitis and relationship between viruses and clinical parameters. J Oral Maxillofac Pathol. 2012; 16 (2): 203—9. PMID: 22923891
  6. Kazi M.M.A.G., Bharadwaj R. Role of herpesviruses in chronic periodontitis and their association with clinical parameters and in increasing severity of the disease. Eur J Dent. 2017; 11 (3): 299—304. PMID: 28932137
  7. Swain S.K., Debta P., Sahu A., Lenka S. Oral cavity manifestations by COVID-19 infections: a review. International Journal of Otorhinolaryngology and Head and Neck Surgery. 2021; 7 (8): 1391—1397. DOI: 10.18203/issn.2454-5929.ijohns20212914
  8. Kämmerer T., Walch J., Flaig M., French L.E. COVID-19-associated herpetic gingivostomatitis. Clin Exp Dermatol. 2021; 46 (1): 174—176. PMID: 33405295
  9. Maldonado M.D., Romero-Aibar J., Pérez-San-Gregorio M.A. COVID-19 pandemic as a risk factor for the reactivation of herpes viruses. Epidemiol Infect. 2021; 149: e145. PMID: 34130765
  10. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020; 11 (7): 995—998. PMID: 32167747
  11. Tavčar P., Potokar M., Kolenc M., Korva M., Avšič-Županc T., Zorec R., Jorgačevski J. Neurotropic viruses, astrocytes, and COVID-19. Front Cell Neurosci. 2021; 15: 662578. PMID: 33897376
  12. Modina T., Zinecker D., Kharitonova M., Mahdi M., Mamaeva E., Usmanova I. Oral viral load of SARS-COV-2 and exacerbation of chronic periodontal disease in patients with novel coronavirus infection (COVID-19). Actual Problems in Dentistry. 2021; 1: 70—75 (In Russ.). eLIBRARY ID: 45699798
  13. Tsarev V.N., Yagodina E.A., Tsareva T.V., Nikolaeva E.N. The impact of the viral-bacterial consortium on occurrence and development of chronic periodontitis. Parodontologiya. 2020; 2: 84—89 (In Russ.). eLIBRARY ID: 42820275
  14. Saleev R.A., Modina T.N., Abdrakhmanov A.K., Zinecker D.T., Ilyinskaya Oh.N., Yakovleva G.Yu., Saleeva G.T., Mamaeva E.V. Metagenome of dentogingival sulcus's communities by the young people with intact periodontium. Indo American Journal of Pharmaceutical Sciences. 2019; 06 (03): 5320—5326. DOI: 10.5281/zenodo.2593675
  15. Balmasova I.P., Olekhnovich E.I., Klimina K.M., Korenkova A.A., Vakhitova M.T., Babaev E.A., Ovchinnikova L.A., Lomakin Y.A., Smirnov I.V., Tsarev V.N., Mkrtumyan A.M., Belogurov A.A. jr, Gabibov A.G., Ilina E.N., Arutyunov S.D. Drift of the subgingival periodontal microbiome during chronic periodontitis in type 2 diabetes mellitus patients. Pathogens. 2021; 10 (5): 504. PMID: 33922308
  16. Ishiguro K., Washio J., Sasaki K., Takahashi N. Real-time monitoring of the metabolic activity of periodontopathic bacteria. J Microbiol Methods. 2015; 115: 22—6. PMID: 25986950
  17. García Carretero R., Luna-Heredia E., Olid-Velilla M., Vazquez-Gomez O. Bacteraemia due to Parvimonas micra, a commensal pathogen, in a patient with an oesophageal tumour. BMJ Case Rep. 2016; 2016: bcr2016217740. PMID: 27864301
  18. Thurnheer T., Karygianni L., Flury M., Belibasakis G.N. Fusobacterium species and subspecies differentially affect the composition and architecture of supra- and subgingival biofilms models. Front Microbiol. 2019; 10: 1716. PMID: 31417514
  19. Liu F., Ma R., Wang Y., Zhang L. The clinical importance of Campylobacter concisus and other human hosted Campylobacter species. Front Cell Infect Microbiol. 2018; 8: 243. PMID: 30087857
  20. Gonçalves L.F., Fermiano D., Feres M., Figueiredo L.C., Teles F.R., Mayer M.P., Faveri M. Levels of Selenomonas species in generalized aggressive periodontitis. J Periodontal Res. 2012; 47 (6): 711—8. PMID: 22612405
  21. Settem R.P., El-Hassan A.T., Honma K., Stafford G.P., Sharma A. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infect Immun. 2012; 80 (7): 2436—43. PMID: 22547549
  22. Balmasova I.P., Tsarev V.N., Yanushevich O.O. Microecology of periodontal disease. The relationship of local and systemic effects. Moscow: Practical Medicine, 2021. 264 p. (In Russ.).
  23. Brinig M.M., Lepp P.W., Ouverney C.C., Armitage G.C., Relman D.A. Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol. 2003; 69 (3): 1687—94. PMID: 12620860
  24. Paster B.J., Boches S.K., Galvin J.L., Ericson R.E., Lau C.N., Levanos V.A., Sahasrabudhe A., Dewhirst F.E. Bacterial diversity in human subgingival plaque. J Bacteriol. 2001; 183 (12): 3770—83. PMID: 11371542
  25. Thukral R., Shrivastav K., Mathur V., Barodiya A., Shrivastav S. Actinomyces: a deceptive infection of oral cavity. J Korean Assoc Oral Maxillofac Surg. 2017; 43 (4): 282—285. PMID: 28875145

Received

October 28, 2022

Accepted

February 13, 2023

Published on

March 22, 2023