DOI:

10.37988/1811-153X_2022_4_144

The skeletal anchorage in the orthodontic treatment of constricted maxilla in the early mixed dentition: A case report

Authors

  • E.V. Pesenko 1, orthodontist, postgraduate at the Orthodontics Division
    ORCID: 0000-0003-4356-6007
  • I.V. Gunenkova 1, PhD in Medical Sciences, research adviser at the Orthodontics Division
  • G.B. Ospanova 1, PhD in Medical Sciences, research adviser at the Orthodontics Division
    ORCID: 0000-0001-5827-1979
  • D.A. Volchek 2, PhD in Medical Sciences, orthodontist, associate professor of the Dentistry department at the Institute of professional education
    ORCID: 0000-0002-9944-3826
  • M.A. Mokhirev 3, PhD in Medical Sciences, oral surgeon, research officer
    ORCID: 0000-0001-8438-175X
  • N.A. Byzov 1, orthodontist, postgraduate at the Orthodontics Division
    ORCID: 0000-0002-9073-5937
  • 1 Central Research Institute of Dental and Maxillofacial Surgery, 119021, Moscow, Russia
  • 2 Sechenov University, 119991, Moscow, Russia
  • 3 National Medical Research Center for Otorhinolaryngology, 123182, Moscow, Russia

Abstract

Miniscrew assisted rapid palatal expansion (MARPE) is a minimally invasive and effective method of treatment for patients patients with maxillary constriction. The technique involves the design and manufacture of the rapid maxillary expansion appliance, with miniscrew anchorage in the palatal cortical bone tissue. Currently, using skeletal anchorage is becoming an increasingly common way to treatment in cases of constricted maxilla because this method: 1) facilitates the management of complex orthodontic biomechanics; 2) can be successfully used to treat transverse maxillary deficiency in borderline cases. It was also found that MARPE effectively opens the midpalatal suture in children at the initial stage of ossification. The stability of the appliance depends on the hard palate anatomical structure and the possibility for bicortical miniscrew placement taking into consideration application of orthopedic forces above 200 grams when the appliance is activated. The clinical case of a 8-year-old patient with maxillary constriction. The patient was treated with MARPE technique application. We described a full digital work-flow using CAD-CAM that can help clinicians in defining the appropriate placement of micro-implant supported maxillary skeletal expander according to quantitative and qualitative bone characteristics of the palate region and this workflow can also enhance cooperation between the orthodontists and lab technicians in construction of the appliance.

Key words:

constricted maxilla, miniscrew, miniscrew assisted rapid palatal expansion, digital modelling

For Citation

[1]
Pesenko E.V., Gunenkova I.V., Ospanova G.B., Volchek D.A., Mokhirev M.A., Byzov N.A. The skeletal anchorage in the orthodontic treatment of constricted maxilla in the early mixed dentition: A case report. Clinical Dentistry (Russia).  2022; 25 (4): 144—148. DOI: 10.37988/1811-153X_2022_4_144

References

  1. Arsenina O.I., Popova N.V., Makhortova P.I., Gairbekova L.A. A comprehensive diagnostic and treatment of patients with narrowing and deformities of the upper jaw. Clinical Dentistry (Russia). 2019; 1 (89): 51—57 (In Russ.). eLIBRARY ID: 37128729
  2. Meshalkina IrinaV., Korsak L.V., Tkachenko T.B. Comparative analysis of speech therapy and orthodontic effects of orthodontic equipment used in the replacement bite to expand the upper dentition. Russian Journal of Dentistry. 2020; 1: 23—27 (In Russ.). eLIBRARY ID: 42605785
  3. Lo Giudice A., Barbato E., et al. Alveolar bone changes after rapid maxillary expansion with tooth-born appliances: a systematic review. Eur J Orthod. 2018; 40 (3): 296—303. PMID: 29016774
  4. Slabkovskaya A.B., Shugueva L.D., Jigalkina E.B. Estimation of efficiency of the appliances for dentition expansion. Orthodontics. 2016; 4 (76): 32—41 (In Russ.). eLIBRARY ID: 29443389
  5. Slabkovskaya A.B., Lugueva D.Sh., Telunts Yu.S. Complications resulting from the use of expansion appliances. Orthodontics. 2016; 2 (74): 21—25 (In Russ.). eLIBRARY ID: 27174550
  6. Lux C.J., Conradt C., Burden D., Komposch G. Transverse development of the craniofacial skeleton and dentition between 7 and 15 years of age—a longitudinal postero-anterior cephalometric study. Eur J Orthod. 2004; 26 (1): 31—42. PMID: 14994880
  7. Garib D.G., Henriques J.F., Janson G., de Freitas M.R., Fernandes A.Y. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: a computed tomography evaluation. Am J Orthod Dentofacial Orthop. 2006; 129 (6): 749—58. PMID: 16769493
  8. Park J.J., Park Y.C., Lee K.J., Cha J.Y., Tahk J.H., Choi Y.J. Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: A cone-beam computed tomography study. Korean J Orthod. 2017; 47 (2): 77—86. PMID: 28337417
  9. Lo Giudice A., Galletti C., Gay-Escoda C., Leonardi R. CBCT assessment of radicular volume loss after rapid maxillary expansion: A systematic review. J Clin Exp Dent. 2018; 10 (5): e484-e494. PMID: 29849974
  10. Lo Giudice A., Quinzi V., Ronsivalle V., Martina S., Bennici O., Isola G. Description of a digital work-flow for CBCT-Guided construction of micro-implant supported maxillary skeletal expander. Materials (Basel). 2020; 13 (8): E1815. PMID: 32290597
  11. Baysal A., Karadede I., Hekimoglu S., Ucar F., Ozer T., Veli I., Uysal T. Evaluation of root resorption following rapid maxillary expansion using cone-beam computed tomography. Angle Orthod. 2012; 82 (3): 488—94. PMID: 21843038
  12. Leonardi R., Lo Giudice A., et al. Three-dimensional evaluation on digital casts of maxillary palatal size and morphology in patients with functional posterior crossbite. Eur J Orthod. 2018; 40 (5): 556—562. PMID: 29474543
  13. Lee K.M., Hwang H.S., Cho J.H. Comparison of transverse analysis between posteroanterior cephalogram and cone-beam computed tomography. Angle Orthod. 2014; 84 (4): 715—9. PMID: 24325622

Received

August 24, 2022

Accepted

October 25, 2022

Published on

December 21, 2022