Hydration of the extracellular environment of periodontal tissues in the dynamics of orthodontic treatment in patients with distal occlusion

Authors

  • O.O. Moskovets 1, postgraduate at the Orthodontics Department
    ORCID: 0000-0002-6479-8192
  • A.B. Slabkovskaya 1, PhD in Medical Sciences, teaching professor of the Orthodontics Department
    ORCID: 0000-0001-8154-5093
  • O.N. Moskovets 1, PhD in Biological Sciences, senior laboratory technician at the Maxillofacial and plastic surgery Department
    ORCID: 0000-0001-9686-1769
  • 1 Moscow State University of Medicine and Dentistry, 127473, Moscow, Russia

Abstract

Aim: Improvement of methods for assessing the functional state of periodontal tissues in patients with distal occlusion.
Materials and methods.
The work carried out a comprehensive examination of 15 healthy volunteers aged 18 to 30 years (control group), and 51 patients aged 18 to 41 years with distal occlusion of the dentition before and in the dynamics of orthodontic treatment with fixed equipment. The degree of hydration of periodontal tissues was assessed using bioimpedance analysis according to an indicator that determines the ratio of resistance of periodontal tissues at different frequencies of sinusoidal current.
Results.
Before treatment, patients with distal occlusion were found to have a reduced level of periodontal hydration by 8—23% in all sextants both in the upper and lower jaw, which was statistically significant compared to the norm and in the control group. The mobility of teeth, assessed by the periotestometry indicator, increased in patients with an increase in the duration of treatment to 12 months by 1.8 times, after which it decreased by 14% with a duration of treatment for more than 13.5 months, remaining statistically significantly greater than in the examined control group. At the final stage of treatment, the index of periodontal tissue hydration in all but one sextant reached values that correspond to the norm.
Conclusion.
The performed orthodontic treatment normalizes the hydration of the periodontal tissues in all sextants, which may reflect the normalization of the cross-section of the lacunar-tubular system cavities. The data obtained can be used to improve methods for assessing the functional state of periodontal tissues in patients with distal occlusion at the stages of treatment.

Key words:

distal occlusion, periotestometry, periodontal tissue hydration, lacunary-tubular system

For Citation

[1]
Moskovets O.O., Slabkovskaya A.B., Moskovets O.N. Hydration of the extracellular environment of periodontal tissues in the dynamics of orthodontic treatment in patients with distal occlusion. Clinical Dentistry (Russia).  2021; 24 (3): 98—103

References

  1. Persin L.S. (ed.) Orthodontics. National manual. Vol. 1. Diagnosis of dentoalveolar anomalies. Moscow: GEOTAR-Media, 2020. 376 p. (In Russ.). DOI: 10.33029/9704-5408-4-1-ONRD-2020-1-304
  2. Pathak J.L., Bravenboer N., Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne). 2020; 11: 405. PMID: 32733380
  3. Sasaki F., Hayashi M., Ono T., Nakashima T. The regulation of RANKL by mechanical force. J Bone Miner Metab. 2021; 39 (1): 34—44. PMID: 32889574
  4. Xiong J., Onal M., Jilka R.L., Weinstein R.S., Manolagas S.C., O.’Brien C.A. Matrix-embedded cells control osteoclast formation. Nat Med. 2011; 17 (10): 1235—41. PMID: 21909103
  5. Kim T., Handa A., Iida J., Yoshida S. RANKL expression in rat periodontal ligament subjected to a continuous orthodontic force. Arch Oral Biol. 2007; 52 (3): 244—50. PMID: 17101113
  6. Kanzaki H., Chiba M., Sato A., Miyagawa A., Arai K., Nukatsuka S., Mitani H. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J Dent Res. 2006; 85 (5): 457—62. PMID: 16632761
  7. Kanzaki H., Chiba M., Shimizu Y., Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. 2002; 17 (2): 210—20. PMID: 11811551
  8. Yamaguchi M., Aihara N., Kojima T., Kasai K. RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res. 2006; 85 (8): 751—6. PMID: 16861294
  9. Kook S.H., Jang Y.S., Lee J.C. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells. J Cell Biochem. 2011; 112 (10): 2891—901. PMID: 21618593
  10. Römer P., Köstler J., Koretsi V., Proff P. Endotoxins potentiate COX—2 and RANKL expression in compressed PDL cells. Clin Oral Investig. 2013; 17 (9): 2041—8. PMID: 23392729
  11. Cao H., Kou X., Yang R., Liu D., Wang X., Song Y., Feng L., He D., Gan Y., Zhou Y. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement. J Dent Res. 2014; 93 (11): 1163—9. PMID: 25252876
  12. Yoshino T., Yamaguchi M., Shimizu M., Yamada K., Kasai K. TNF-alpha aggravates the progression of orthodontically-induced inflammatory root resorption in the presence of RANKL. Journal of Hard Tissue Biology. 2014; 23 (2): 155—162. DOI: 10.2485/jhtb.23.155
  13. Jin Y., Li J., Wang Y., Ye R., Feng X., Jing Z., Zhao Z. Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells. Angle Orthod. 2015; 85 (1): 87—94. PMID: 24810489
  14. Kikuta J., Yamaguchi M., Shimizu M., Yoshino T., Kasai K. Notch signaling induces root resorption via RANKL and IL—6 from hPDL cells. J Dent Res. 2015; 94 (1): 140—7. PMID: 25376720
  15. Long P., Hu J., Piesco N., Buckley M., Agarwal S. Low magnitude of tensile strain inhibits IL-1beta-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J Dent Res. 2001; 80 (5): 1416—20. PMID: 11437211
  16. Rupp M., Merboth F., Daghma D.E., Biehl C., El Khassawna T., Heiß C. Osteocytes. Z Orthop Unfall. 2019; 157 (2): 154—163. PMID: 30366349
  17. Manolagas S.C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000; 21 (2): 115—37. PMID: 10782361
  18. Smith M.M., Hall B.K. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol Rev Camb Philos Soc. 1990; 65 (3): 277—373. PMID: 2205303
  19. Pawlicki R. Studies of the fossil dinosaur bone in the scanning electron microscope. Z Mikrosk Anat Forsch. 1975; 89 (2): 393—8. PMID: 1224770
  20. Bonewald L.F. The Role of the osteocyte in bone and nonbone disease. Endocrinol Metab Clin North Am. 2017; 46 (1): 1—18. PMID: 28131126
  21. Buenzli P.R., Sims N.A. Quantifying the osteocyte network in the human skeleton. Bone. 2015; 75: 144—50. PMID: 25708054
  22. Robling A.G., Bonewald L.F. The osteocyte: New insights. Annu Rev Physiol. 2020; 82: 485—506. PMID: 32040934
  23. Uda Y., Azab E., Sun N., Shi C., Pajevic P.D. Osteocyte mechanobiology. Curr Osteoporos Rep. 2017; 15 (4): 318—325. PMID: 28612339
  24. Avrunin A.S. Oosteocytic remodeling: question history modern representations and possibilities of the clinical estimation. Traumatology and Orthopedics of Russia. 2012; 1: 128—134 (In Russ.). eLIBRARY ID: 17684736
  25. Avrunin A.S., Tikhilov R.M., Shubnyakov I.I., Parshin L.K., Melnikov B.E. Critical analysis of the mechanostat theory. Part I. Reorganization mechanisms of skeletal architecture. Traumatology and Orthopedics of Russia. 2012; 2 (64): 105—116. (In Russ.). eLIBRARY ID: 17803420
  26. Avrunin A.S., Parshin L.K., Melnikov B.E. Critical analysis of mechanostat theory. Part II. Stability of mechano-metabolic skeleton environment and homeostatic parameters of calcium in organism. Traumatology and Orthopedics of Russia. 2013; 1: 127—137 (In Russ.). eLIBRARY ID: 18853277
  27. Whitfield J.F. Primary cilium—is it an osteocyte’s strain-sensing flowmeter? J Cell Biochem. 2003; 89 (2): 233—7. PMID: 12704786
  28. Skerry T.M., Suva L.J. Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Cell Biochem Funct. 2003; 21 (3): 223—9. PMID: 12910474
  29. Nikolaev D.V., Smirnov A.V., Bobrinskaya I.G., Rudnev S.G. Bioimpedance analysis of human body composition. Moscow: Science, 2009. 392 p. (In Russ.).
  30. Prikuls V.F., Moskovets O.N., Rabinovich S.A., Gerasimenko M.Yu. Influence of the severity of chronic generalized periodontitis, age and chewing load on periodontal hemodynamics. Clinical Dentistry (Russia). 2007; 4 (44): 28—30 (In Russ.). eLIBRARY ID: 9604318
  31. Moskovets O.N., Zoryan E.V., Gioeva Yu.A., Kirgizova E.S. The degree of hydration of periodontal tissues and its correction in orthodontic treatment. Proceedings of XIV International Conference of Oral and Maxillofacial Surgeons and Dentists. Sain-Petersburg, 2009. Pp. 133—134 (In Russ.).
  32. Moskovets O.N., Nikolaev D.V., Smirnov A.V. Evaluation of the periodontal tissue hydration level via bioimpedance spectrometry. IFMBE Proceedings, 2007. Vol. 17. Pp. 142—145.
  33. Slabkovskaya A.B., Persin L.S. Orthodontics. Diagnostics and treatment of transverse occlusion anomalies. Moscow: Baltoprint, 2010. 228 p. (In Russ.).
  34. Stupnitskiy A.V., Persin L.S., Pankratova N.V., Postnikov M.A., Karton E.A., Moskovets O.O. Orthodontic patients posterior teeth periodontium hemodynamics upon applying NiTi wires of different cross-sections. EC Dental Science. 2019; 18 (4): 755—65.

Received

May 27, 2021

Accepted

August 24, 2021

Published on

September 1, 2021