DOI:

10.37988/1811-153X_2020_4_19

Research of the structure of teeth enamel mineral component in connective tissue dysplasia by densitometry and atomic force microscopy in the late postpartum ontogenesis period

Authors

  • V.D. Vagner 1, PhD in Medical Sciences, full professor of the Dental service organization, licensing and accreditation Department
  • V.P. Konev 2, PhD in Medical Sciences, full professor of the Forensic medicine and jurisprudence Department
  • A.S. Korshunov 2, assistant at the Maxillofacial surgery Department
  • K.N. Kuryatnikov 2, clinical resident of the Dentistry Department
  • A.P. Skurikhina 2, 3th year student at the Dental Faculty
  • A.A. Bondar 2, 3d year student at the Dental Faculty
  • 1 Central Research Institute of Dental and Maxillofacial Surgery, 119021, Moscow, Russia
  • 2 Omsk State Medical University, 644099, Omsk, Russia

Abstract

Objective. It’s necessary to give a quantitative and qualitative characteristic of the enamel mineral component structure of impacted teeth with and without connective tissue dysplasia in different periods of late postpartum human ontogenesis using densitometry and atomic force microscopy methods. Materials and methods. 60 males with and without connective tissue dysplasia (age subgroups: 31—40, 41—50, 51—60 years) were removed either 3.8 or 4.8 tooth. Each tooth had no contact with the oral fluid. The densitometric assessment of the inorganic enamel component density was performed using the Kodak Dental Systems software. The shape, packing, and distance between the enamel prisms were analyzed using the Image Analysis NT—VDT software. Results. It was found that pronounced enamel metabolism is observed in impacted teeth after 30 years. This kind of metabolism is characterized by a change in the shape, packing density and distance of enamel prisms. The study shows that in case of connective tissue dysplasia, the rates of maturation of enamel prisms in the late postpartum ontogenesis period are reduced. Conclusions. In case of connective tissue dysplasia the picture of incomplete amelogenesis with a low packing density and a large distance between enamel prisms is observed.

Key words:

enamel prisms, connective tissue dysplasia, age, densitometry, atomic force microscopy

For Citation

[1]
Vagner V.D., Konev V.P., Korshunov A.S., Kuryatnikov K.N., Skurikhina A.P., Bondar A.A. Research of the structure of teeth enamel mineral component in connective tissue dysplasia by densitometry and atomic force microscopy in the late postpartum ontogenesis period. Clinical Dentistry (Russia).  2021; 4 (96): 19—24. DOI: 10.37988/1811-153X_2020_4_19

References

  1. Antonova I.N., Goncharov V.D., Kipchuk A.V., Bobrova Ye.A. Peculiarities of the morphological structure of the inorganic component of human dental enamel and dentin at nano-level. — Morphology. — 2014; 146 (5): 52—6 (In Russ.).
  2. Vagner V.D., Konev V.P., Korshunov A.S. Change of the mineral componente of the teeth enamy during connective tissue dysplasia in the age aspect. — Dental Institute. — 2019; 83 (2): 20—1. (In Russ.).
  3. Vagner V.D., Konev V.P., Korshunov A.S. Age changes in mineral component and organic matrix of human teeth enamel by electronic and atomic-power microscopy methods. — Clinical Dentistry (Russia). — 2019; 91 (3): 4—6. (In Russ.).
  4. Vagner V.D., Konev V.P., Korshunov A.S., Serov D.O. The research of prismatic shells of human teeth enamel’s organic matrix by the atomic-force microscopy method in the postnatal period of ontogenesis. — Dental Institute. — 2019; 84 (3): 94—5 (In Russ.).
  5. Ippolitov Yu.A. Human tooth enamel functional morphology. — J New Med Technol. — 2010; 17 (2): 56—7 (In Russ.).
  6. Korshunov A.S., Konev V.P., Moskovskiy S.N., Firsova V.O., Kuryatnikov K.N., Vavakin V.Yu. Structure of the mineral component of enamel impacted teeth in the postnatal period of ontogenesis in connective tissue dysplasia. — Health and Education millennium. — 2018; 20 (6): 43—7 (In Russ.).
  7. Leont’ev V.K. Tooth enamel as biocybernetic system. — Moscow: GEOTAR-Media, 2016. — 72 p. (In Russ.).
  8. Luckaja I.K., Novak N.V., Terehova N.V., Zapashnik P.E. Basic optical properties of human teeth enamel. — Clin Implant Dentistry. — 2004; 1 (4): 24—30. (In Russ.).
  9. Shestel’ I.L., Korshunov A.S., Losev A.S., Shestel’ L.A., Davletkil’deev N.A., Konev V.P. The method of making dental preparations for morphological studies of enamel prisms in atomic force (AFM) and inverted microscopes. — Patent RU №2458675, effective from 04.05.2011.
  10. Korshunov A.S., Konev V.P., Serov D.O., Moskovskij S.N. The method of making dental preparations for morphological studies of enamel prisms in the surface layer in atomic force (AFM) and inverted microscopes. — Patent RU № 2702903, effective from 14.03.2018.
  11. Korshunov A.S., Konev V.P., Vagner V.D., Serov D.O., Kuryatnikov K.N. The method for determining the x-ray density of the teeth cervical region. — Patent RU № 2718300, effective from 07.10.2019.
  12. Korshunov A.S., Konev V.P., Vagner V.D., Serov D.O., Kuryatnikov K.N. The method for determining the X-ray density of the apex of the teeth tuberous part. — Patent RU № 2718280, effective from 07.10.2019.
  13. Korshunov A.S., Muhin A.N., Serov D.O., Konev V.P., Moskovskij S.N., Al’zhanov A.M., Firsova V.O., Kuryatnikov K.N. Dental depthometer. — Patent RU № 187021, effective from 02.07.2018.
  14. Shumilovich B.R., Vorob’yeva Yu.B., Malykhina I.E., Chertovskikh A.V. Modern views on the crystal structure of hydroxyapatite and processes age-related changes of tooth enamel (in vitro study). — J Anat Histopatology. — 2015; 4 (1): 77—86 (In Russ.).
  15. Poggio C., Ceci M., Beltrami R., Lombardini M., Colombo M. Atomic force microscopy study of enamel remineralization. — Ann Stomatol (Roma). — 2014; 5 (3): 98—102. PMID: 25506414
  16. Beniash E., Metzler R.A., Lam R.S., Gilbert P.U. Transient amorphous calcium phosphate in forming enamel. — J Struct Biol. — 2009; 166 (2): 133—43. PMID: 19217943
  17. Beyeler M., Schild C., Lutz R., Chiquet M., Trueb B. Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. — Exp. Cell Res. — 2010; 316 (7): 1202—12. PMID: 20043904
  18. Cerci B. Dental enamel roughness with different acid etching times: Atomic force microscopy study. — Eur J Gen Dentistry. — 2012; 1 (3): 187—91. DOI: 10.4103/2278-9626.105385
  19. Diekwisch T.G., Berman B.J., Gentner S., Slavkin H.C. Initial enamel crystals are not spatially associated with mineralized dentin. — Cell Tissue Res. — 1995; 279 (1): 149 —67. PMID: 7895256
  20. FitzGerald C.M. Do enamel microstructures have regular time depen-dency. Conclusions from the literature and a large-scale study. — J Hum Evol. — 1998; 35 (4—5): 371—86. PMID: 9774500
  21. Landis W.J., Burke G.Y., Neuringer J.R., Paine M.C., Nanci A., Bai P., Warshawsky H. Earliest enamel deposits of the rat incisor examined by electron microscopy, electron diffraction, and electron probe microanalysis. — Anat Rec. — 1988: 220 (3): 233—8. PMID: 2834985
  22. Lechner B.D., Röper S., Messerschmidt J., Blume A., Magerle R. Monitoring demineralization and subsequent remineralization of human teeth at the dentin-enamel junction with atomic force microscopy. — ACS Applied Materials Interfaces. — 2015; 7 (34): 18937—43. PMID: 26266571

Published on

January 13, 2021