DOI:

10.37988/1811-153X_2020_3_113

The clinical significance of adhesion of representatives of the oral microbiota to polymer materials recommended for dental technology of computer milling and 3D printing

Authors

  • T.V. Tsareva 1, PhD in Medical sciences, associate professor of the Microbiology, virology, immunology Department
  • L.G. Kirakosyan 1, assistant at the Dentistry diseases propaedeutics Department
  • D.I. Grachev 1, PhD in Medical sciences, associate professor of the Dentistry diseases propaedeutics department
  • S.V. Krasheninnikov 2, researcher at the Laboratory of polymer materials
  • E.A. Chizhmakov 1, assistant at the Prosthodontics technology Department
  • Y.N. Kharah 1, assistant at the Dentistry diseases propaedeutics Department
  • V.N. Tsarev 1, PhD in Medical Sciences, full professor of the Microbiology, virology, immunology Department, director of the Medico-dental research Institute
  • S.D. Arutyunov 1, PhD in Medical Sciences, full professor of the Dentistry diseases propaedeutics Department
  • 1 Moscow State University of Medicine and Dentistry, 127473, Moscow, Russia
  • 2 Kurchatov Institute, 123182, Moscow, Russia

Abstract

Evaluation of primary adhesion to orthopedic dental materials for the main groups of oral microbial consortium is an actual problem and can be considered as an important criterion parameter for the choice of construction material. Materials and methods. In vitro adhesion of test cultures was studied to samples of: traditional acrylic polymers — Luxatemp Automix Plus (DMG, Germany) and Sinma-M (Stoma, Ukraine); plastics for 3D milling — Temp Basic (Zirkonzahn, Italy) and Re-Fine Acrylic (Yamahachi Dental, Japan); UV curing polymers for 3D printing — Freeprint temp (Detax, Germany), NextDent C&B MFH (Netherlands) and Dental Sand (HARZ Labs, Russia). The obtained adhesion indices were averaged by main groups: normal microbiota, periodontopathogenic microbiota, mycotic microbiota. The results were processed according to the Kruskal—Wallis criterion taking into account the Dann criterion and the Bonferroni amendment. Results. A high adhesion index for all groups of microbiota was observed for cold and hot polymerization materials, reliably lower — for subtractive milling technology, and minimal — for additive 3D printing materials. The minimum level of microbial adhesion (0.35±0.02) was found in the new Russian material Dental Sand for all groups of microbiota as compared to materials for cold and hot polymerization. Conclusion. Adhesion of the main groups of oral microbiota is determined both by the type of technology used to create prosthetic dental structures and by the physical and chemical nature of the structural material, as well as by the surface characteristics formed using this or that technology.

Key words:

adhesion, oral microbiota, polymeric materials, orthopedic constructions, CAD/CAM milling, 3D printing

For Citation

[1]
Tsareva T.V., Kirakosyan L.G., Grachev D.I., Krasheninnikov S.V., Chizhmakov E.A., Kharah Y.N., Tsarev V.N., Arutyunov S.D. The clinical significance of adhesion of representatives of the oral microbiota to polymer materials recommended for dental technology of computer milling and 3D printing. Clinical Dentistry (Russia).  2020; 3 (95): 113—118. DOI: 10.37988/1811-153X_2020_3_113

References

  1. Antsiferov V.N., Rogozhnikov G.I., Kislykh F.I., Astashina N.B., Smetkin A.A., Rapekta S.I. Application of advanced structural materials under complex treatment of patients with jaw defects. — Perspective materials. — 2009; 3: 46—51 (In Russ.).
  2. Ibragimov T.I., Arutyunov S.D., Tsarev V.N. Selection of structural material for manufacturing temporary dentures for persons with periodontal diseases based on data from clinical and laboratory studies of bacterial adhesion. — Stomatologiya. — 2002; 2: 40 (In Russ.).
  3. Arutyunov S.D., Tsarev V.N., Babunaschvili G.B., Gevorkyan A.A., Burdavitsina M.V., Travina M.V., Roshkovsky E.V. Clinical aspects of microbial colonization of temporary dentures from acrylates. — Stomatologiya. — 2008; 1: 61—4 (In Russ.).
  4. Arutyunov S.D., Chumachenko Ye.N., Yanushevich O.O., Lebedenko I.Yu., Ignatyeva D.N., Losev F.F., Ibragimov T.I., Malginov N.N. The use of information technologies to choose rational dental prosthesis constructions. — Russian Journal of Dentistry. — 2010; 3: 19—22 (In Russ.).
  5. Goncharov N.A., Leshcheva E.A., Trefilova Yu.A., Tsareva E.V., Trefilov A.G. Reasons for use of pharmaceutical crowns in tooth preparation taking into account microbial adhesion on the surface of orthpaedical material. — Clinical Dentistry (Russia). — 2016; 1 (77): 52—5 (In Russ.).
  6. Larsen T., Fiehn N.-E. Dental biofilm infections — an update. — APMIS. — 2017; 125 (4): 376—84. PMID: 28407420
  7. Galvão-Moreira L.V., da Cruz M.C.F.N. Oral microbiome, periodontitis and risk of head and neck cancer. — Oral Oncol. — 2016; 53: 17—9. PMID: 26684542
  8. Tsarev V.N., Ippolitov E.V., Trefilov A.G., Arutyunov S.D., Pivovarov A.A. Features of adhesion of anaerobic periodontopathogenic bacteria and C. albicans fungi to experimental samples of basic dental plastic depending on surface roughness and polishing method. — Journal of Microbiology Epidemiology Immunobiology. — 2014; 6: 21—7 (In Russ.).
  9. Arutyunov A.S., Tsarev V.N., Kravtsov D.V., Komov E.V. Comparative analysis of adhesion of microbial flora from the oral cavity to the base materials for polyurethane and acryl-based jaw prostheses. — Russian Journal of Dentistry. — 2011; 1: 19—23 (In Russ.).
  10. Tsarev V.N. Microecology of the oral cavity. Microbiocenosis and the study of biofilms. — In: Tsarev V.N. (ed.) Microbiology, Virology, and Oral Immunology. — Moscow.: GEOTAR-Media, 2019. — P. 172—213 (In Russ.).
  11. Astashina N.B., Kazakov S.V., Rogozhnikova E.P., Gorjachev P.S. Development of a non-invasive splint as a curative and preventive deviceused in treatment of patients with chronic generalized periodontitis. — Actual problem of dentistry. — 2018; 1: 52—6 (In Russ.).
  12. Malazoniya T.T. Clinical and microbiological rationale for the photodynamic therapy and teeth splinting in the complex treatment of periodontal disease: dissertation abstract. — Mosocow: Moscow State University of Medicine and Dentistry, 2019. — 25 p.
  13. Tsarev V.N., Arutyunov S.D., Balmasova I.P., Babayev E.A., Nikolaeva E.N., Ippoliov E.V., Il‘ina E.N., Gabibov A.G. Molecular diagnostic of periodontitis and metagenomic analysis of the periodontum microbiota in patients by type II diabetes mellitus. — Bacteriology. — 2018; 2: 30—7 (In Russ.).
  14. Thurnheer T., Bao K., Belibasakis G.N. Subgingival biofilms as etiological factors of periodontal disease. — In: Bostanci N., Belibasakis G.N. (eds.) Pathogenesis of Periodontal Diseases. — Springer, 2018. — P. 21—29. DOI: 10.1007/978—3-319—53737—5
  15. Cavalcanti I.M.G., Nobbs A.H., Ricomini-Filho A.P., Jenkinson H.F., Cury A.A.D.B. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material. — Pathog Dis. — 2016; 74 (3): ftw002. PMID: 26755532
  16. O’Toole G.A. To build a biofilm. — J Bacteriol. — 2003; 185 (9): 2687—9. PMID: 12700246
  17. Arutiunov S.D., Tsarev V.N., Ippolitov E.V., Apresian S.V., Trefilov A.G. Biofilm formation on temporary dentures: correlation of primary adhesion, coaggregation and colonization. — Stomatologiya. — 2012; 5—1: 5—10 (In Russ.).

Published on

September 15, 2020