DOI:

10.37988/1811-153X_2020_3_72

Artificial neural networks in dental and maxillofacial radiology: a review

Authors

  • A.A. Muraev 1, PhD in Medical Sciences, full professor of the Oral and maxillofacial surgery Department
  • N.A. Guseynov 1, resident at the Oral and maxillofacial surgery Department
  • P.A. Tsay 2, student
  • I.A. Kibardin 2, student
  • D.V. Burenchev 3, PhD in Medical Sciences, chief researcher
  • S.S. Ivanov 1, resident at the Oral and maxillofacial surgery Department
  • N.Yu. Oborotistov 4, PhD in medical Sciences, assistant professor of the Orthodontics Department
  • M.A. Matuta 5, postgraduate at the General and pediatric dentistry Department
  • N.S. Grachev 6, PhD in Medical Sciences, head of the Oncology and pediatric surgery Department, general manager of the Head and neck surgery and reconstructive plastic surgery Team, vice-director of the Oncology, radiology and nuclear medicine Institute
  • S.S. Larin 6, PhD in Biology, vice-director of the of Molecular and experimental medicine Institute
  • 1 RUDN University, 117198, Moscow, Russia
  • 2 MIPT, 141701, Dolgoprudny, Russia
  • 3 Center for Diagnostics and Telemedicine, 109029, Moscow, Russia
  • 4 Moscow State University of Medicine and Dentistry, 127473, Moscow, Russia
  • 5 Stavropol State Medical University, 355017, Stavropol, Russia
  • 6 Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, 117997, Moscow, Russia

Abstract

Radiology is a huge and most intellectually intensive field of medicine, so the use of artificial intelligence (AI) is still too far from the full analysis of images and successfully solved only basic, routine tasks. This review article presents modern possibilities of machine vision based on artificial neural networks (ANS) in radiation diagnostics, in particular in dentistry and maxillofacial surgery. The result of searching for articles by keywords (from 12.04.2020) shows an increase in the number of publications by an order of magnitude: from 58 articles per year on average in 2000—2015 to 945 in 2019. The main application of the neural network was found in the recognition of anatomical objects on X-rays: cortical and spongy layer of the jaw bones, the lower jaw canal, maxillary sinus, teeth, root canals; pathological formations and processes: periapical inflammatory changes, including cysts, tumors, bone resorption in periodontitis, fractures of the root of teeth, etc. The main application of the neural network is in the recognition of the anatomical objects on X-rays. Modern neural networks are trained and work with two-dimensional (2D) images: orthopantomogram, teleradiograms in forward and lateral projections, ultrasound images, and with three-dimensional (3D) data of computer tomography and magnetic resonance tomography. Special attention is paid to 2D and 3D cephalometric analysis. In addition to the analysis of theoretical research, the article also considers the mechanisms of neural network integration into the treatment process and assessment of their real benefits for practicing doctors, further prospects for the development of neural network approaches. Conclusion. Introduction of machine vision technologies on the basis of deep neural network convolution for radiological diagnostics in dentistry (and medicine in general) is a promising direction that allows to automate and speed up processing and recognition of initial data and, possibly, to reduce the number of errors associated with the human factor. However, at present, ANS cannot and should not replace highly specialized doctors when making a diagnosis and drawing up a treatment plan; it is recommended to use them as independent expert systems.

Key words:

artificial intelligence, artificial neural network, deep learning, radiography, radiology, cone-beam computed tomography, cephalometric analysis, orthodontics, maxillofacial surgery, lateral ceph, frontal ceph

For Citation

[1]
Muraev A.A., Guseynov N.A., Tsay P.A., Kibardin I.A., Burenchev D.V., Ivanov S.S., Oborotistov N.Yu., Matuta M.A., Grachev N.S., Larin S.S. Artificial neural networks in dental and maxillofacial radiology: a review. Clinical Dentistry (Russia).  2020; 3 (95): 72—80. DOI: 10.37988/1811-153X_2020_3_72

References

  1. Nenasheva E.A., Nenashev S.S. Artificial intelligence — forecasts for 2019. — Information Technology. Problems And Solutions. — 2019; 1 (6): 71—4 (In Russ.).
  2. Gusev A.V. Prospects for neural networks and deep machine learning in creating health solutions. — Information Technologies for the Physician. — 2017; 3: 92—105 (In Russ.).
  3. Leite A.F., de Faria Vasconcelos K., Willems H., Jacobs R. Radiomics and machine learning in oral healthcare. — Proteomics Clin Appl. — 2020; 14 (3): e1900040. PMID: 31950592
  4. LeCun Y., Boser B., Denker J.S., Henderson D., Howard R.E., Hubbard R.E., Jackel L.D. Backpropagation applied to handwritten zip code recognition. — Neural Computation. — 1989; 1 (4): 541—51. DOI: 10.1162/neco.1989.1.4.541
  5. He K., Zhang X., Ren S., Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. — Proceedings of the 015 IEEE International Conference on Computer Vision (ICCV). — Santiago, 2015. — Pp. 1026—1034. DOI: 10.1109/ICCV.2015.123.
  6. Ardila D., Kiraly A.P., Bharadwaj S., Choi B., Reicher J.J., Peng L., Tse D., Etemadi M., Ye W., Corrado G., Naidich D.P., Shetty S. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. — Nat Med. — 2019; 25 (6): 954—61. PMID: 31110349
  7. Semenov M.G., Kudryavceva O.A., Stetsenko A.G., Filippova A.V. modern methods of craniometrical analysis in reconstructive surgery planning on the facial skull in the growing organism. — The Dental Institute. — 2015; 1 (66): 48—51.
  8. Banar N., Bertels J., Laurent F., Boedi R.M., De Tobel J., Thevissen P., Vandermeulen D. Towards fully automated third molar development staging in panoramic radiographs. — Int J Legal Med. — 2020; 134 (5): 1831—1841. PMID: 32239317
  9. De Tobel J., Radesh P., Vandermeulen D., Thevissen P.W. An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. — J Forensic Odontostomatol. — 2017; 35 (2): 42—54. PMID: 29384736
  10. Lee J.-H., Han S.-S., Kim Y.H., Lee C., Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. — Oral Surg Oral Med Oral Pathol Oral Radiol. — 2020; 129 (6): 635—42. PMID: 31992524
  11. Miki Y., Muramatsu C., Hayashi T., Zhou X., Hara T., Katsumata A., Fujita H. Classification of teeth in cone-beam CT using deep convolutional neural network. — Comput Biol Med. — 2017; 80: 24—9. PMID: 27889430
  12. Hiraiwa T., Ariji Y., Fukuda M., Kise Y., Nakata K., Katsumata A., Fujita H., Ariji E. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. — Dentomaxillofac Radiol. — 2019; 48 (3): 20180218. PMID: 30379570
  13. Kwak G.H., Kwak E.-J., Song J.M., Park H.R., Jung Y.-H., Cho B.-H., Hui P., Hwang J.J. Automatic mandibular canal detection using a deep convolutional neural network. — Sci Rep. — 2020; 10 (1): 5711. PMID: 32235882
  14. Orhan K., Bayrakdar I.S., Ezhov M., Kravtsov A., Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. — Int Endod J. — 2020; 53 (5): 680—9. PMID: 31922612
  15. Lee J.-H., Kim D.-H., Jeong S.-N. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. — Oral Dis. — 2020; 26 (1): 152—8. PMID: 31677205
  16. Abdolali F., Zoroofi R.A., Otake Y., Sato Y. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics. — Comput Methods Programs Biomed. — 2017; 139: 197—207. PMID: 28187891
  17. Ariji Y., Yanashita Y., Kutsuna S., Muramatsu C., Fukuda M., Kise Y., Nozawa M., Kuwada C., Fujita H., Katsumata A., Ariji E. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. — Oral Surg Oral Med Oral Pathol Oral Radiol. — 2019; 128 (4): 424—430. PMID: 31320299
  18. Krois J., Ekert T., Meinhold L., Golla T., Kharbot B., Wittemeier A., Dörfer C., Schwendicke F. Deep Learning for the Radiographic Detection of Periodontal Bone Loss. — Sci Rep. — 2019; 9 (1): 8495. PMID: 31186466
  19. Kositbowornchai S., Plermkamon S., Tangkosol T. Performance of an artificial neural network for vertical root fracture detection: an ex vivo study. — Dent Traumatol. — 2013; 29 (2): 151—5. PMID: 22613067
  20. Lee K.-S., Jung S.-K., Ryu J.-J., Shin S.-W., Choi J. Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. — J Clin Med. — 2020; 9 (2): 392. PMID: 32024114
  21. Chu P., Bo C., Liang X., Yang J., Megalooikonomou V., Yang F., Huang B., Li X., Ling H. Using Octuplet Siamese Network For Osteoporosis Analysis On Dental Panoramic Radiographs. — Conf Proc IEEE Eng Med Biol Soc. — 2018; 2018: 2579—82. PMID: 30440935
  22. Murata M., Ariji Y., Ohashi Y., Kawai T., Fukuda M., Funakoshi T., Kise Y., Nozawa M., Katsumata A., Fujita H., Ariji E. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. — Oral Radiol. — 2019; 35 (3): 301—7. PMID: 30539342
  23. Kise Y., Shimizu M., Ikeda H., Fujii T., Kuwada C., Nishiyama M., Funakoshi T., Ariji Y., Fujita H., Katsumata A., Yoshiura K., Ariji E. Usefulness of a deep learning system for diagnosing Sjögren‘s syndrome using ultrasonography images. — Dentomaxillofac Radiol. — 2020; 49 (3): 20190348. PMID: 31804146
  24. Sumida I., Magome T., Kitamori H., Das I.J., Yamaguchi H., Kizaki H., Aboshi K., Yamashita K., Yamada Y., Seo Y., Isohashi F., Ogawa K. Deep convolutional neural network for reduction of contrast-enhanced region on CT images. — J Radiat Res. — 2019; 60 (5): 586—594. PMID: 31125068
  25. Hu Z., Jiang C., Sun F., Zhang Q., Ge Y., Yang Y., Liu X., Zheng H., Liang D. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks. — Med Phys. — 2019; 46 (4): 1686—1696. PMID: 30697765
  26. Dot G., Rafflenbeul F., Arbotto M., Gajny L., Rouch P., Schouman T. Accuracy and reliability of automatic three-dimensional cephalometric landmarking. — Int J Oral Maxillofac Surg. — 2020; S0901—5027 (20)30083—7. PMID: 32169306
  27. Yun H.S., Jang T.J., Lee S.M., Lee S.-H., Seo J.K. Learning-based local-to-global landmark annotation for automatic 3D cephalometry. — hys Med Biol. — 2020; 65 (8): 085018. PMID: 32101805
  28. Kunz F., Stellzig-Eisenhauer A., Zeman F., Boldt J. Artificial intelligence in orthodontics : Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. — J Orofac Orthop. — 2020; 81 (1): 52—68. PMID: 31853586
  29. Codari M., Caffini M., Tartaglia G.M., Sforza C., Baselli G. Computer-aided cephalometric landmark annotation for CBCT data. — Int J Comput Assist Radiol Surg. — 2017; 12 (1): 113—121. PMID: 27358080
  30. Leonardi R., Giordano D., Maiorana F., Spampinato C. Automatic cephalometric analysis. — Angle Orthod. — 2008; 78 (1): 145—51. PMID: 18193970
  31. Lindner C., Wang C.-W., Huang C.-T., Li C.-H., Chang S.-W., Cootes T.F. Fully automatic system for accurate localisation and analysis of cephalometric landmarks in lateral cephalograms. — Sci Rep. — 2016; 6: 33581. PMID: 27645567
  32. Leonardi R., Giordano D., Maiorana F. An evaluation of cellular neural networks for the automatic identification of cephalometric landmarks on digital images. — J Biomed Biotechnol. — 2009; 2009: 717102. PMID: 19753320
  33. Sommer T., Ciesielski R., Erbersdobler J., Orthuber W., Fischer-Brandies H. Precision of cephalometric analysis via fully and semiautomatic evaluation of digital lateral cephalographs. — Dentomaxillofac Radiol. — 2009; 38 (6): 401—6. PMID: 19700534
  34. Hung K., Montalvao C., Tanaka R., Kawai T., Bornstein M.M. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. — Dentomaxillofac Radiol. — 2020; 49 (1): 20190107. PMID: 31386555
  35. Chen Y.-W., Stanley K., Att W. Artificial intelligence in dentistry: current applications and future perspectives. — Quintessence Int. — 2020; 51 (3): 248—57. PMID: 32020135
  36. Zhulev E.N., Pavlova E.P. Methods of study of three-dimensional orientation of mandibular axis reporting to the orthognathic occlusion based on the computer tomography (CT) of temporomandibular joint (TMJ). — Clinical Dentistry (Russia). — 2013; 1 (65): 70—3 (In Russ.).
  37. Ivanov S.Yu., Korotkova N.L., Polma L.V., Yamurkova N.F., Muraev A.A., Fomin M.Yu., Dymnikov A.B. Comprehensive approach — the formula for success in the treatment of patients with congenital mandibular deformation. — Plastic Surgery and Aesthetic Medicine. — 2013; 1: 21—7 (In Russ.).
  38. Shadlinskaya R.V., Gasymova Z.V., Gasymov O.F. Comparative characteristics of the maxillofacial parameters of patients with β-thalassemia major and distal occlusion. — Clinical Dentistry (Russia). — 2019; 1 (89): 46—50 (In Russ.).
  39. Ivanov S.Yu., Korotkova N.L., Muraev A.A., Safyanova E.V., Bykovskaya T.V. Evaluation of the effectiveness of a new surgical method for the treatment of congenital skeletal anomalies in the dentoalveolar system. — Modern problems of science and education. — 2017; 5: 208 (In Russ.).
  40. Neelapu B.C., Kharbanda O.P., Sardana V., Gupta A., Vasamsetti S., Balachandran R., Sardana H.K. Automatic localization of three-dimensional cephalometric landmarks on CBCT images by extracting symmetry features of the skull. — Dentomaxillofac Radiol. — 2018; 47 (2): 20170054. PMID: 28845693
  41. Grau V., Alcañiz M., Juan M.C., Monserrat C., Knoll C. Automatic localization of cephalometric Landmarks. — J Biomed Inform. — 2001; 34 (3): 146—56. PMID: 11723697
  42. Hutton T.J., Cunningham S., Hammond P. An evaluation of active shape models for the automatic identification of cephalometric landmarks. — Eur J Orthod. — 2000; 22 (5): 499—508. PMID: 11105406
  43. Rudolph D.J., Sinclair P.M., Coggins J.M. Automatic computerized radiographic identification of cephalometric landmarks. — Am J Orthod Dentofacial Orthop. — 1998; 113 (2): 173—9. PMID: 9484208
  44. Vucinić P., Trpovski Z., Sćepan I. Automatic landmarking of cephalograms using active appearance models. — Eur J Orthod. — 2010; 32 (3): 233—41. PMID: 20203126
  45. Gupta A., Kharbanda O.P., Sardana V., Balachandran R., Sardana H.K. Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm. — Int J Comput Assist Radiol Surg. — 2016; 11 (7): 1297—309. PMID: 26704370
  46. Gupta A., Kharbanda O.P., Sardana V., Balachandran R., Sardana H.K. A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. — Int J Comput Assist Radiol Surg. — 2015; 10 (11): 1737—52. PMID: 25847662
  47. Makram M., Kamel H. Reeb graph for automatic 3D cephalometry . — International Journal of Image Processing. — 2014; 8 (2): 17—29. https://www.researchgate.net
  48. Montúfar J., Romero M., Scougall-Vilchis R.J. Hybrid approach for automatic cephalometric landmark annotation on cone-beam computed tomography volumes. — Am J Orthod Dentofacial Orthop. — 2018; 154 (1): 140—50. PMID: 29957312
  49. Rueda S., Alcañiz M. An approach for the automatic cephalometric landmark detection using mathematical morphology and active appearance models. — Med Image Comput Comput Assist Interv. — 2006; 9 (Pt 1): 159—66. PMID: 17354886
  50. Arık S.Ö., Ibragimov B., Xing L. Fully automated quantitative cephalometry using convolutional neural networks. — J Med Imaging (Bellingham). — 2017; 4 (1): 014501. PMID: 28097213
  51. Muraev A.A., Kibardin I.A., Oborotistov N.Yu., Ivanov S.S., Persin L.S. Use of neural network algorithms for the automated arrangement of cephalometric markers on lateral cefalograms. — Russian Electronic Journal of Radiology. — 2018; 4: 16—22 (In Russ.).
  52. Lin H.-H., Chuang Y.-F., Weng J.-L., Lo L.-J. Comparative validity and reproducibility study of various landmark-oriented reference planes in 3-dimensional computed tomographic analysis for patients receiving orthognathic surgery. — PLoS One. — 2015; 10 (2): e0117604. PMID: 25668209
  53. Vlijmen O.J.C., Maal T.J.J., Bergé S.J., Bronkhorst E.M., Katsaros C., Kuijpers-Jagtman A.M. A comparison between two-dimensional and three-dimensional cephalometry on frontal radiographs and on cone beam computed tomography scans of human skulls. — Eur J Oral Sci. — 2009; 117 (3): 300—5. PMID: 19583759
  54. Farronato G., Garagiola U., Dominici A., Periti G., de Nardi S., Carletti V., Farronato D. “Ten-point” 3D cephalometric analysis using low-dosage cone beam computed tomography. — Prog Orthod. — 2010; 11 (1): 2—12. PMID: 20529623
  55. Codari M., Caffini M., Tartaglia G.M., Sforza C., Baselli G. Computer-aided cephalometric landmark annotation for CBCT data. — Int J Comput Assist Radiol Surg. — 2017; 12 (1): 113—121. PMID: 27358080
  56. Shahidi S., Bahrampour E., Soltanimehr E., Zamani A., Oshagh M., Moattari M., Mehdizadeh A. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images. — BMC Med Imaging. — 2014; 14: 32. PMID: 25223399
  57. Gawande A. Why Doctors Hate Their Computers. — The New Yorker. — 2018; Nov, 12. https://www.newyorker.com
  58. Network C.G.A.R. Comprehensive molecular characterization of urothelial bladder carcinoma. — Nature. — 2014; 507 (7492): 315—22. PMID: 24476821
  59. Shtarberg A.I., Kulesha N.V., Bokin A.N., Smirnova E.A., Polyakov D.S. Analysis of mistakes in X-ray diagnosis in forensic medicine. — Proceedings of the “Forensic medicine: questions, problems, expert practice”. — Novosibirsk, 2018. — P. 12—16 (In Russ.).

Published on

September 15, 2020