DOI:

10.37988/1811-153X_2022_4_159

Application of metal nanoparticles and their oxides in dental composite materials and structures: A review (part I)

Authors

  • S.Yu. Ivanov 1, Russian Academy of Science corresponding member, PhD in Medical Sciences, full professor of the Maxillofacial surgery Department
    ORCID: 0000-0001-5458-0192
  • Ya.N. Karasenkov 2, PhD in Medical Science, chief physician
    ORCID: 0000-0002-9658-3700
  • N.V. Latuta 1, PhD Medical Sciences, associate professor of the Department of Pediatric Dentistry, Preventive Dentistry and Orthodontics
    ORCID: 0000-0002-6754-0314
  • V.V. Dzhatdaev 3, dental surgeon
    ORCID: 0000-0002-0338-4906
  • E.A. Egorov 4, dentist
    ORCID: 0000-0002-3519-3864
  • E.K. Tarasova 4, dentist
    ORCID: 0000-0002-6715-2071
  • E.V. Kozlova 1, dentist at the Therapeutic Division
    ORCID: 0000-0002-3722-2120
  • P.A. Kozlov 1, maxillofacial surgeon, clinics of maxillofacial surgery named after N.N. Bazhanov
    ORCID: 0000-0001-5554-7001
  • 1 Sechenov University, 119991, Moscow, Russia
  • 2 “Rosdent” Dental Clinic, 119192, Moscow, Russia
  • 3 “President” Dental Clinic, 117449, Moscow, Russia
  • 4 “Aesthetics” Dental Clinic, 141191, Fryazino, Russia

Abstract

Nanotechnology makes it possible to obtain nanoparticles in sizes of 1—100 nanometers. In these sizes, the chemical, physical and optical properties of materials change dramatically. Nanoparticles of metals and their oxides are promising for the synthesis of fundamentally new bioactive medical materials and structures. Nanoparticles of metals and their oxides, as antibacterial agents of a new generation, demonstrate pronounced, long-term bactericidal properties due to a larger ratio of the surface area of the nanoparticle to its volume. In connection with the spread of bacterial resistance to antibiotics, outbreaks of infectious diseases, the emergence of new resistant strains of microorganisms, pharmaceutical companies, research universities are studying and developing fundamentally new antibacterial substances. >. Nanoparticles of metals and their oxides can be used as effective inhibitors of the development and maturation of the biofilm of the oral cavity, prevention of re-colonization of the interface between the media: filling — adhesive mediator — tooth, microbial degradation of dental composites, orthopedic, orthodontic, surgical structures, prevention and treatment of inflammatory diseases of the maxillofacial area.

Key words:

nanoparticles, nanomedicine, nanobiomaterials, nanotechnology, antibacterial agent

For Citation

[1]
Ivanov S.Yu., Karasenkov Ya.N., Latuta N.V., Dzhatdaev V.V., Egorov E.A., Tarasova E.K., Kozlova E.V., Kozlov P.A. Application of metal nanoparticles and their oxides in dental composite materials and structures: A review (part I). Clinical Dentistry (Russia).  2022; 25 (4): 159—165. DOI: 10.37988/1811-153X_2022_4_159

References

  1. Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019; 25 (1): E112. PMID: 31892180
  2. Azharuddin M., Zhu G.H., Das D., Ozgur E., Uzun L., Turner A.P.F., Patra H.K. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb). 2019; 55 (49): 6964—6996. PMID: 31140997
  3. Prominski A., Li P., Miao B.A., Tian B. Nanoenabled bioelectrical modulation. Acc Mater Res. 2021; 2 (10): 895—906. PMID: 34723193
  4. Zhu G., Huang Z., Xu Z., Yan L.T. Tailoring interfacial nanoparticle organization through entropy. Acc Chem Res. 2018; 51 (4): 900—909. PMID: 29589915
  5. Parameswaran R., Tian B. Rational design of semiconductor nanostructures for functional subcellular interfaces. Acc Chem Res. 2018; 51 (5): 1014—1022. PMID: 29668260
  6. Arslan E., Hatip Koc M., Uysal O., Dikecoglu B., Topal A.E., Garifullin R., Ozkan A.D., Dana A., Hermida-Merino D., Castelletto V., Edwards-Gayle C., Baday S., Hamley I., Tekinay A.B., Guler M.O. Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells. Biomacromolecules. 2017; 18 (10): 3114—3130. PMID: 28840715
  7. Wu G.F., Zhu J., Weng G.J., Li J.J., Zhao J.W. Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. Mikrochim Acta. 2021; 188 (10): 345. PMID: 34537870
  8. Abbasi E., Milani M., Fekri Aval S., Kouhi M., Akbarzadeh A., Tayefi Nasrabadi H., Nikasa P., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Samiei M. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev Microbiol. 2016; 42 (2): 173—80. PMID: 24937409
  9. Sathiyanarayanan G., Dineshkumar K., Yang Y.H. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol. 2017; 43 (6): 731—752. PMID: 28440091
  10. Vimbela G.V., Ngo S.M., Fraze C., Yang L., Stout D.A. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017; 12: 3941—3965. PMID: 28579779
  11. Niemirowicz K., Durnaś B., Tokajuk G., Piktel E., Michalak G., Gu X., Kułakowska A., Savage P.B., Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep. 2017; 7 (1): 4610. PMID: 28676673
  12. Ahmad N., Jafri Z., Khan Z.H. Evaluation of nanomaterials to prevent oral Candidiasis in PMMA based denture wearing patients. A systematic analysis. J Oral Biol Craniofac Res. 2020; 10 (2): 189—193. PMID: 32373449
  13. Araujo H.C., da Silva A.C.G., Paião L.I., Magario M.K.W., Frasnelli S.C.T., Oliveira S.H.P., Pessan J.P., Monteiro D.R. Antimicrobial, antibiofilm and cytotoxic effects of a colloidal nanocarrier composed by chitosan-coated iron oxide nanoparticles loaded with chlorhexidine. J Dent. 2020; 101: 103453. PMID: 32827599
  14. Yu Q., Li J., Zhang Y., Wang Y., Liu L., Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep. 2016; 6: 26667. PMID: 27220400
  15. Reding-Roman C., Hewlett M., Duxbury S., Gori F., Gudelj I., Beardmore R. The unconstrained evolution of fast and efficient antibiotic-resistant bacterial genomes. Nat Ecol Evol. 2017; 1 (3): 50. PMID: 28812723
  16. Baranova A.A., Alferova V.A., Korshun V.A., Tyurin A.P. Antibiotics from extremophilic micromycetes. Russ J Bioorg Chem. 2020; 46 (6): 903—971. PMID: 33390684
  17. Suay-García B., Pérez-Gracia M.T. Future prospects for Neisseria gonorrhoeae Treatment. Antibiotics (Basel). 2018; 7 (2): E49. PMID: 29914071
  18. Pompilio A., Scribano D., Sarshar M., Di Bonaventura G., Palamara A.T., Ambrosi C. Gram-negative bacteria holding together in a biofilm: The Acinetobacter baumannii way. Microorganisms. 2021; 9 (7): 1353. PMID: 34206680
  19. Żelechowska P., Agier J., Brzezińska-Błaszczyk E. Endogenous antimicrobial factors in the treatment of infectious diseases. Cent Eur J Immunol. 2016; 41 (4): 419—425. PMID: 28450805
  20. Paprocka P., Durnaś B., et al. New β-Lactam antibiotics and ceragenins A study to assess their potential in treatment of infections caused by multidrug-resistant strains of Pseudomonas aeruginosa. Infect Drug Resist. 2021; 14: 5681—5698. PMID: 34992394
  21. Udegova E.S., Gildeeva K.A., Rukosueva T.V., Baker S. Metal nanoparticle antibacterial effect on antibiotic-resistant strains of bacteria. Russian Journal of Infection and Immunity. 2021; 4: 771—776 (In Russ.). eLIBRARY ID: 46566978
  22. Abramenko N., Deyko G., et al. Acute toxicity of Cu-MOF nanoparticles (nanoHKUST-1) towards embryos and adult zebrafish. Int J Mol Sci. 2021; 22 (11): 5568. PMID: 34070324
  23. Jarai B.M., Stillman Z., et al. Evaluating UiO-66 metal-organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl Mater Interfaces. 2020; 12 (35): 38989—39004. PMID: 32805901
  24. Kulkarni S., Pandey A., et al. ZIF-8 nano confined protein-titanocene complex core-shell MOFs for efficient therapy of Neuroblastoma: Optimization, molecular dynamics and toxicity studies. Int J Biol Macromol. 2021; 178: 444—463. PMID: 33636277
  25. Xia Q., Chen Z., et al. Near-infrared organic fluorescent nanoparticles for long-term monitoring and photodynamic therapy of cancer. Nanotheranostics. 2019; 3 (2): 156—165. PMID: 31008024
  26. Yang S., Li Y. Fluorescent hybrid silica nanoparticles and their biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020; 12 (3): e1603. PMID: 31837124
  27. Rashki S., Asgarpour K., et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021; 251: 117108. PMID: 33142645
  28. Rizeq B.R., Younes N.N., Rasool K., Nasrallah G.K. Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. Int J Mol Sci. 2019; 20 (22): E5776. PMID: 31744157
  29. Kulkarni J.A., Witzigmann D., Leung J., Tam Y.Y.C., Cullis P.R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019; 11 (45): 21733—21739. PMID: 31713568
  30. Witzigmann D., Kulkarni J.A., et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev. 2020; 159: 344—363. PMID: 32622021
  31. Ding D., Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C Mater Biol Appl. 2018; 92: 1041—1060. PMID: 30184728
  32. Danhier F., Ansorena E., et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012; 161 (2): 505—22. PMID: 22353619
  33. Anuje M., Pawaskar P.N., et al. Synthesis, characterization, and cytotoxicity evaluation of polyethylene glycol-coated iron oxide nanoparticles for radiotherapy application. J Med Phys. 2021; 46 (3): 154—161. PMID: 34703099
  34. Qin Y., Shan X., Han Y., Jin H., Gao Y. Study of pH-responsive and polyethylene glycol-modified doxorubicin-loaded mesoporous silica nanoparticles for drug delivery. J Nanosci Nanotechnol. 2020; 20 (10): 5997—6006. PMID: 32384944
  35. Ge X., Cao Z., Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants (Basel). 2022; 11 (4): 791. PMID: 35453476
  36. Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020; 15: 2555—2562. PMID: 32368040
  37. Naikoo G., Al-Mashali F., et al. An overview of copper nanoparticles: Synthesis, characterisation and anticancer activity. Curr Pharm Des. 2021; 27 (43): 4416—4432. PMID: 34348615
  38. Javed R., Ain N.U., Gul A., Arslan Ahmad M., Guo W., Ao Q., Tian S. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol. 2022; 16 (5): 171—189. PMID: 35411585
  39. Koshevaya E., Krivoshapkina E., Krivoshapkin P. Tantalum oxide nanoparticles as an advanced platform for cancer diagnostics: a review and perspective. J Mater Chem B. 2021; 9 (25): 5008—5024. PMID: 34113950
  40. Toledano M., Vallecillo-Rivas M., et al. Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. J Dent. 2021; 107: 103616. PMID: 33636241
  41. Martin A., Cai J., et al. Zein-polycaprolactone core-shell nanofibers for wound healing. Int J Pharm. 2022; 621: 121809. PMID: 35550408
  42. Anil A., Ibraheem W.I., et al. Nano-hydroxyapatite (nHAp) in the remineralization of early dental caries: A scoping review. Int J Environ Res Public Health. 2022; 19 (9): 5629. PMID: 35565022
  43. Luo W., Huang Y., et al. The effect of disaggregated nano-hydroxyapatite on oral biofilm in vitro. Dent Mater. 2020; 36 (7): e207-e216. PMID: 32417013
  44. Zhao R., Lv M., et al. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl Mater Interfaces. 2017; 9 (18): 15328—15341. PMID: 28422486
  45. Li J., Zheng J., et al. Facile synthesis of rGO-MoS2-Ag nanocomposites with long-term antimicrobial activities. Nanotechnology. 2020; 31 (12): 125101. PMID: 31770730
  46. Sterzenbach T., Helbig R., et al. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig. 2020; 24 (12): 4237—4260. PMID: 33111157
  47. Zhao F., Zeng J., Parvez Arnob M.M., et al. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots. Nanoscale. 2014; 6 (14): 8199—207. PMID: 24926835
  48. Wang Y., Hua H., et al. Surface modification of ZrO2 nanoparticles and its effects on the properties of dental resin composites. ACS Appl Bio Mater. 2020; 3 (8): 5300—5309. PMID: 35021704
  49. Dizaj S.M., Lotfipour F., et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014; 44: 278—84. PMID: 25280707
  50. Wang N., Fuh J.Y.H., Dheen S.T., Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater. 2021; 109 (2): 160—179. PMID: 32776481
  51. Kim H., Bang K.M., et al. Tyrosyltyrosylcysteine-directed synthesis of chiral cobalt oxide nanoparticles and peptide conformation analysis. ACS Nano. 2021; 15 (1): 979—988. PMID: 33332089
  52. Pavlova E.L., Toshkovska R.D., et al. Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine. Arch Microbiol. 2020; 202 (7): 1873—1880. PMID: 32448965
  53. Zafar N., Madni A., et al. Pharmaceutical and biomedical applications of green synthesized metal and metal oxide nanoparticles. Curr Pharm Des. 2020; 26 (45): 5844—5865. PMID: 33243108
  54. Khan A.A.P., Khan A., Asiri A.M., Ashraf G.M., Alhogbia B.G. Graphene Oxide based metallic nanoparticles and their some biological and environmental application. Curr Drug Metab. 2017; 18 (11): 1020—1029. PMID: 29034831
  55. Rzheussky S.E. Silver nanoparticles in medicine. Vestnik of Vitebsk State Medical University. 2022; 2: 15—24 (In Russ.). eLIBRARY ID: 48468519
  56. Ng V.W., Chan J.M., et al. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev. 2014; 78: 46—62. PMID: 25450263
  57. Tuli H.S., Kashyap D., et al. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci. 2015; 143: 71—9. PMID: 26524969
  58. Neves A.C.O., Viana A.D., et al. Biospectroscopy and chemometrics as an analytical tool for comparing the antibacterial mechanism of silver nanoparticles with popular antibiotics against Escherichia coli. Spectrochim Acta A Mol Biomol Spectrosc. 2021; 253: 119558. PMID: 33631629
  59. Ramburrun P., Pringle N.A., Dube A., Adam R.Z., D.’Souza S., Aucamp M. Recent advances in the development of antimicrobial and antifouling biocompatible materials for dental applications. Materials (Basel). 2021; 14 (12): 3167. PMID: 34207552
  60. Choi S.H., Jang Y.S., et al. Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application. J Appl Biomater Funct Mater. 2019; 17 (3): 2280800019847067. PMID: 31530071
  61. Sadoon A.A., Khadka P., et al. Silver ions caused faster diffusive dynamics of histone-like nucleoid-structuring proteins in live bacteria. Appl Environ Microbiol. 2020; 86 (6): e02479—19. PMID: 31953329
  62. Kędziora A., Wieczorek R., et al. Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: Experimental and computational studies. Front Microbiol. 2021; 12: 659614. PMID: 34276595
  63. Betts H.D., Neville S.L., et al. The biochemical fate of Ag+ ions in Staphylococcus aureus, Escherichia coli, and biological media. J Inorg Biochem. 2021; 225: 111598. PMID: 34517168
  64. Joshi A.S., Singh P., Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. Int J Mol Sci. 2020; 21 (20): E7658. PMID: 33081366
  65. Malic S., Rai S., et al. Zeolite-embedded silver extends antimicrobial activity of dental acrylics. Colloids Surf B Biointerfaces. 2019; 173: 52—57. PMID: 30266020
  66. Kennes K., Martin C., et al. Silver zeolite composite-based LEDs: Origin of electroluminescence and charge transport. ACS Appl Mater Interfaces. 2019; 11 (13): 12179—12183. PMID: 30880384
  67. Janićijević D., Uskoković-Marković S., et al. Double active BEA zeolite/silver tungstophosphates Antimicrobial effects and pesticide removal. Sci Total Environ. 2020; 735: 139530. PMID: 32473436
  68. Hissae Yassue-Cordeiro P., Zandonai C.H., et al. Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics. 2019; 11 (10): E535. PMID: 31615120
  69. Qing Y., Li K., Li D., Qin Y. Antibacterial effects of silver incorporated zeolite coatings on 3D printed porous stainless steels. Mater Sci Eng C Mater Biol Appl. 2020; 108: 110430. PMID: 31923959
  70. Xu V.W., Nizami M.Z.I., Yin I.X., Yu O.Y., Lung C.Y.K., Chu C.H. Application of copper nanoparticles in dentistry. Nanomaterials (Basel). 2022; 12 (5): 805. PMID: 35269293
  71. Nevezhina A.V., Fadeeva T.V. Prospects for the creation of antimicrobial preparations based on copper and copper oxides nanoparticles. Acta Biomedica Scientifica. 2021; 6-2: 37—50 (In Russ.). eLIBRARY ID: 47426035
  72. Raura N., Garg A., Arora A., Roma M. Nanoparticle technology and its implications in endodontics: a review. Biomater Res. 2020; 24 (1): 21. PMID: 33292702
  73. Ma X., Zhou S., Xu X., Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg. 2022; 9: 905892. PMID: 35990090
  74. Korsch M., Marten S.M., et al. Microbiological findings in early and late implant loss: an observational clinical case-controlled study. BMC Oral Health. 2021; 21 (1): 112. PMID: 33706748
  75. Obst U., Marten S.M., et al. Diversity of patients microflora on orthopaedic and dental implants. Int J Artif Organs. 2012; 35 (10): 727—34. PMID: 23138700
  76. Arora R.K., Mordan N.J., Spratt D.A., Ng Y.L., Gulabivala K. Bacteria in the cavity-restoration interface after varying periods of clinical service SEM description of distribution and 16S rRNA gene sequence identification of isolates. Clin Oral Investig. 2022; 26 (7): 5029—5044. PMID: 35359188
  77. Vasiliu S., Racovita S., Gugoasa I.A., Lungan M.A., Popa M., Desbrieres J. The benefits of smart nanoparticles in dental applications. Int J Mol Sci. 2021; 22 (5): 2585. PMID: 33806682
  78. Liu K., He Z., Byrne H.J., Curtin J.F., Tian F. Investigating the role of gold nanoparticle shape and size in their toxicities to fungi. Int J Environ Res Public Health. 2018; 15 (5): E998. PMID: 29772665
  79. Xie W., Guo Z., et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018; 8 (12): 3284—3307. PMID: 29930730

Received

July 11, 2022

Accepted

October 18, 2022

Published on

December 21, 2022