DOI:
10.37988/1811-153X_2022_4_159Application of metal nanoparticles and their oxides in dental composite materials and structures: A review (part I)
Downloads
Abstract
Nanotechnology makes it possible to obtain nanoparticles in sizes of 1—100 nanometers. In these sizes, the chemical, physical and optical properties of materials change dramatically. Nanoparticles of metals and their oxides are promising for the synthesis of fundamentally new bioactive medical materials and structures. Nanoparticles of metals and their oxides, as antibacterial agents of a new generation, demonstrate pronounced, long-term bactericidal properties due to a larger ratio of the surface area of the nanoparticle to its volume. In connection with the spread of bacterial resistance to antibiotics, outbreaks of infectious diseases, the emergence of new resistant strains of microorganisms, pharmaceutical companies, research universities are studying and developing fundamentally new antibacterial substances. >. Nanoparticles of metals and their oxides can be used as effective inhibitors of the development and maturation of the biofilm of the oral cavity, prevention of re-colonization of the interface between the media: filling — adhesive mediator — tooth, microbial degradation of dental composites, orthopedic, orthodontic, surgical structures, prevention and treatment of inflammatory diseases of the maxillofacial area.Key words:
nanoparticles, nanomedicine, nanobiomaterials, nanotechnology, antibacterial agentFor Citation
[1]
Ivanov S.Yu., Karasenkov Ya.N., Latuta N.V., Dzhatdaev V.V., Egorov E.A., Tarasova E.K., Kozlova E.V., Kozlov P.A. Application of metal nanoparticles and their oxides in dental composite materials and structures: A review (part I). Clinical Dentistry (Russia). 2022; 25 (4): 159—165. DOI: 10.37988/1811-153X_2022_4_159
References
- Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019; 25 (1): E112. PMID: 31892180
- Azharuddin M., Zhu G.H., Das D., Ozgur E., Uzun L., Turner A.P.F., Patra H.K. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb). 2019; 55 (49): 6964—6996. PMID: 31140997
- Prominski A., Li P., Miao B.A., Tian B. Nanoenabled bioelectrical modulation. Acc Mater Res. 2021; 2 (10): 895—906. PMID: 34723193
- Zhu G., Huang Z., Xu Z., Yan L.T. Tailoring interfacial nanoparticle organization through entropy. Acc Chem Res. 2018; 51 (4): 900—909. PMID: 29589915
- Parameswaran R., Tian B. Rational design of semiconductor nanostructures for functional subcellular interfaces. Acc Chem Res. 2018; 51 (5): 1014—1022. PMID: 29668260
- Arslan E., Hatip Koc M., Uysal O., Dikecoglu B., Topal A.E., Garifullin R., Ozkan A.D., Dana A., Hermida-Merino D., Castelletto V., Edwards-Gayle C., Baday S., Hamley I., Tekinay A.B., Guler M.O. Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells. Biomacromolecules. 2017; 18 (10): 3114—3130. PMID: 28840715
- Wu G.F., Zhu J., Weng G.J., Li J.J., Zhao J.W. Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. Mikrochim Acta. 2021; 188 (10): 345. PMID: 34537870
- Abbasi E., Milani M., Fekri Aval S., Kouhi M., Akbarzadeh A., Tayefi Nasrabadi H., Nikasa P., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Samiei M. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev Microbiol. 2016; 42 (2): 173—80. PMID: 24937409
- Sathiyanarayanan G., Dineshkumar K., Yang Y.H. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol. 2017; 43 (6): 731—752. PMID: 28440091
- Vimbela G.V., Ngo S.M., Fraze C., Yang L., Stout D.A. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017; 12: 3941—3965. PMID: 28579779
- Niemirowicz K., Durnaś B., Tokajuk G., Piktel E., Michalak G., Gu X., Kułakowska A., Savage P.B., Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep. 2017; 7 (1): 4610. PMID: 28676673
- Ahmad N., Jafri Z., Khan Z.H. Evaluation of nanomaterials to prevent oral Candidiasis in PMMA based denture wearing patients. A systematic analysis. J Oral Biol Craniofac Res. 2020; 10 (2): 189—193. PMID: 32373449
- Araujo H.C., da Silva A.C.G., Paião L.I., Magario M.K.W., Frasnelli S.C.T., Oliveira S.H.P., Pessan J.P., Monteiro D.R. Antimicrobial, antibiofilm and cytotoxic effects of a colloidal nanocarrier composed by chitosan-coated iron oxide nanoparticles loaded with chlorhexidine. J Dent. 2020; 101: 103453. PMID: 32827599
- Yu Q., Li J., Zhang Y., Wang Y., Liu L., Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep. 2016; 6: 26667. PMID: 27220400
- Reding-Roman C., Hewlett M., Duxbury S., Gori F., Gudelj I., Beardmore R. The unconstrained evolution of fast and efficient antibiotic-resistant bacterial genomes. Nat Ecol Evol. 2017; 1 (3): 50. PMID: 28812723
- Baranova A.A., Alferova V.A., Korshun V.A., Tyurin A.P. Antibiotics from extremophilic micromycetes. Russ J Bioorg Chem. 2020; 46 (6): 903—971. PMID: 33390684
- Suay-García B., Pérez-Gracia M.T. Future prospects for Neisseria gonorrhoeae Treatment. Antibiotics (Basel). 2018; 7 (2): E49. PMID: 29914071
- Pompilio A., Scribano D., Sarshar M., Di Bonaventura G., Palamara A.T., Ambrosi C. Gram-negative bacteria holding together in a biofilm: The Acinetobacter baumannii way. Microorganisms. 2021; 9 (7): 1353. PMID: 34206680
- Żelechowska P., Agier J., Brzezińska-Błaszczyk E. Endogenous antimicrobial factors in the treatment of infectious diseases. Cent Eur J Immunol. 2016; 41 (4): 419—425. PMID: 28450805
- Paprocka P., Durnaś B., et al. New β-Lactam antibiotics and ceragenins A study to assess their potential in treatment of infections caused by multidrug-resistant strains of Pseudomonas aeruginosa. Infect Drug Resist. 2021; 14: 5681—5698. PMID: 34992394
- Udegova E.S., Gildeeva K.A., Rukosueva T.V., Baker S. Metal nanoparticle antibacterial effect on antibiotic-resistant strains of bacteria. Russian Journal of Infection and Immunity. 2021; 4: 771—776 (In Russ.). eLIBRARY ID: 46566978
- Abramenko N., Deyko G., et al. Acute toxicity of Cu-MOF nanoparticles (nanoHKUST-1) towards embryos and adult zebrafish. Int J Mol Sci. 2021; 22 (11): 5568. PMID: 34070324
- Jarai B.M., Stillman Z., et al. Evaluating UiO-66 metal-organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl Mater Interfaces. 2020; 12 (35): 38989—39004. PMID: 32805901
- Kulkarni S., Pandey A., et al. ZIF-8 nano confined protein-titanocene complex core-shell MOFs for efficient therapy of Neuroblastoma: Optimization, molecular dynamics and toxicity studies. Int J Biol Macromol. 2021; 178: 444—463. PMID: 33636277
- Xia Q., Chen Z., et al. Near-infrared organic fluorescent nanoparticles for long-term monitoring and photodynamic therapy of cancer. Nanotheranostics. 2019; 3 (2): 156—165. PMID: 31008024
- Yang S., Li Y. Fluorescent hybrid silica nanoparticles and their biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020; 12 (3): e1603. PMID: 31837124
- Rashki S., Asgarpour K., et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021; 251: 117108. PMID: 33142645
- Rizeq B.R., Younes N.N., Rasool K., Nasrallah G.K. Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. Int J Mol Sci. 2019; 20 (22): E5776. PMID: 31744157
- Kulkarni J.A., Witzigmann D., Leung J., Tam Y.Y.C., Cullis P.R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019; 11 (45): 21733—21739. PMID: 31713568
- Witzigmann D., Kulkarni J.A., et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev. 2020; 159: 344—363. PMID: 32622021
- Ding D., Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C Mater Biol Appl. 2018; 92: 1041—1060. PMID: 30184728
- Danhier F., Ansorena E., et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012; 161 (2): 505—22. PMID: 22353619
- Anuje M., Pawaskar P.N., et al. Synthesis, characterization, and cytotoxicity evaluation of polyethylene glycol-coated iron oxide nanoparticles for radiotherapy application. J Med Phys. 2021; 46 (3): 154—161. PMID: 34703099
- Qin Y., Shan X., Han Y., Jin H., Gao Y. Study of pH-responsive and polyethylene glycol-modified doxorubicin-loaded mesoporous silica nanoparticles for drug delivery. J Nanosci Nanotechnol. 2020; 20 (10): 5997—6006. PMID: 32384944
- Ge X., Cao Z., Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants (Basel). 2022; 11 (4): 791. PMID: 35453476
- Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020; 15: 2555—2562. PMID: 32368040
- Naikoo G., Al-Mashali F., et al. An overview of copper nanoparticles: Synthesis, characterisation and anticancer activity. Curr Pharm Des. 2021; 27 (43): 4416—4432. PMID: 34348615
- Javed R., Ain N.U., Gul A., Arslan Ahmad M., Guo W., Ao Q., Tian S. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol. 2022; 16 (5): 171—189. PMID: 35411585
- Koshevaya E., Krivoshapkina E., Krivoshapkin P. Tantalum oxide nanoparticles as an advanced platform for cancer diagnostics: a review and perspective. J Mater Chem B. 2021; 9 (25): 5008—5024. PMID: 34113950
- Toledano M., Vallecillo-Rivas M., et al. Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. J Dent. 2021; 107: 103616. PMID: 33636241
- Martin A., Cai J., et al. Zein-polycaprolactone core-shell nanofibers for wound healing. Int J Pharm. 2022; 621: 121809. PMID: 35550408
- Anil A., Ibraheem W.I., et al. Nano-hydroxyapatite (nHAp) in the remineralization of early dental caries: A scoping review. Int J Environ Res Public Health. 2022; 19 (9): 5629. PMID: 35565022
- Luo W., Huang Y., et al. The effect of disaggregated nano-hydroxyapatite on oral biofilm in vitro. Dent Mater. 2020; 36 (7): e207-e216. PMID: 32417013
- Zhao R., Lv M., et al. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl Mater Interfaces. 2017; 9 (18): 15328—15341. PMID: 28422486
- Li J., Zheng J., et al. Facile synthesis of rGO-MoS2-Ag nanocomposites with long-term antimicrobial activities. Nanotechnology. 2020; 31 (12): 125101. PMID: 31770730
- Sterzenbach T., Helbig R., et al. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig. 2020; 24 (12): 4237—4260. PMID: 33111157
- Zhao F., Zeng J., Parvez Arnob M.M., et al. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots. Nanoscale. 2014; 6 (14): 8199—207. PMID: 24926835
- Wang Y., Hua H., et al. Surface modification of ZrO2 nanoparticles and its effects on the properties of dental resin composites. ACS Appl Bio Mater. 2020; 3 (8): 5300—5309. PMID: 35021704
- Dizaj S.M., Lotfipour F., et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014; 44: 278—84. PMID: 25280707
- Wang N., Fuh J.Y.H., Dheen S.T., Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater. 2021; 109 (2): 160—179. PMID: 32776481
- Kim H., Bang K.M., et al. Tyrosyltyrosylcysteine-directed synthesis of chiral cobalt oxide nanoparticles and peptide conformation analysis. ACS Nano. 2021; 15 (1): 979—988. PMID: 33332089
- Pavlova E.L., Toshkovska R.D., et al. Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine. Arch Microbiol. 2020; 202 (7): 1873—1880. PMID: 32448965
- Zafar N., Madni A., et al. Pharmaceutical and biomedical applications of green synthesized metal and metal oxide nanoparticles. Curr Pharm Des. 2020; 26 (45): 5844—5865. PMID: 33243108
- Khan A.A.P., Khan A., Asiri A.M., Ashraf G.M., Alhogbia B.G. Graphene Oxide based metallic nanoparticles and their some biological and environmental application. Curr Drug Metab. 2017; 18 (11): 1020—1029. PMID: 29034831
- Rzheussky S.E. Silver nanoparticles in medicine. Vestnik of Vitebsk State Medical University. 2022; 2: 15—24 (In Russ.). eLIBRARY ID: 48468519
- Ng V.W., Chan J.M., et al. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev. 2014; 78: 46—62. PMID: 25450263
- Tuli H.S., Kashyap D., et al. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci. 2015; 143: 71—9. PMID: 26524969
- Neves A.C.O., Viana A.D., et al. Biospectroscopy and chemometrics as an analytical tool for comparing the antibacterial mechanism of silver nanoparticles with popular antibiotics against Escherichia coli. Spectrochim Acta A Mol Biomol Spectrosc. 2021; 253: 119558. PMID: 33631629
- Ramburrun P., Pringle N.A., Dube A., Adam R.Z., D.’Souza S., Aucamp M. Recent advances in the development of antimicrobial and antifouling biocompatible materials for dental applications. Materials (Basel). 2021; 14 (12): 3167. PMID: 34207552
- Choi S.H., Jang Y.S., et al. Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application. J Appl Biomater Funct Mater. 2019; 17 (3): 2280800019847067. PMID: 31530071
- Sadoon A.A., Khadka P., et al. Silver ions caused faster diffusive dynamics of histone-like nucleoid-structuring proteins in live bacteria. Appl Environ Microbiol. 2020; 86 (6): e02479—19. PMID: 31953329
- Kędziora A., Wieczorek R., et al. Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: Experimental and computational studies. Front Microbiol. 2021; 12: 659614. PMID: 34276595
- Betts H.D., Neville S.L., et al. The biochemical fate of Ag+ ions in Staphylococcus aureus, Escherichia coli, and biological media. J Inorg Biochem. 2021; 225: 111598. PMID: 34517168
- Joshi A.S., Singh P., Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. Int J Mol Sci. 2020; 21 (20): E7658. PMID: 33081366
- Malic S., Rai S., et al. Zeolite-embedded silver extends antimicrobial activity of dental acrylics. Colloids Surf B Biointerfaces. 2019; 173: 52—57. PMID: 30266020
- Kennes K., Martin C., et al. Silver zeolite composite-based LEDs: Origin of electroluminescence and charge transport. ACS Appl Mater Interfaces. 2019; 11 (13): 12179—12183. PMID: 30880384
- Janićijević D., Uskoković-Marković S., et al. Double active BEA zeolite/silver tungstophosphates Antimicrobial effects and pesticide removal. Sci Total Environ. 2020; 735: 139530. PMID: 32473436
- Hissae Yassue-Cordeiro P., Zandonai C.H., et al. Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics. 2019; 11 (10): E535. PMID: 31615120
- Qing Y., Li K., Li D., Qin Y. Antibacterial effects of silver incorporated zeolite coatings on 3D printed porous stainless steels. Mater Sci Eng C Mater Biol Appl. 2020; 108: 110430. PMID: 31923959
- Xu V.W., Nizami M.Z.I., Yin I.X., Yu O.Y., Lung C.Y.K., Chu C.H. Application of copper nanoparticles in dentistry. Nanomaterials (Basel). 2022; 12 (5): 805. PMID: 35269293
- Nevezhina A.V., Fadeeva T.V. Prospects for the creation of antimicrobial preparations based on copper and copper oxides nanoparticles. Acta Biomedica Scientifica. 2021; 6-2: 37—50 (In Russ.). eLIBRARY ID: 47426035
- Raura N., Garg A., Arora A., Roma M. Nanoparticle technology and its implications in endodontics: a review. Biomater Res. 2020; 24 (1): 21. PMID: 33292702
- Ma X., Zhou S., Xu X., Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg. 2022; 9: 905892. PMID: 35990090
- Korsch M., Marten S.M., et al. Microbiological findings in early and late implant loss: an observational clinical case-controlled study. BMC Oral Health. 2021; 21 (1): 112. PMID: 33706748
- Obst U., Marten S.M., et al. Diversity of patients microflora on orthopaedic and dental implants. Int J Artif Organs. 2012; 35 (10): 727—34. PMID: 23138700
- Arora R.K., Mordan N.J., Spratt D.A., Ng Y.L., Gulabivala K. Bacteria in the cavity-restoration interface after varying periods of clinical service SEM description of distribution and 16S rRNA gene sequence identification of isolates. Clin Oral Investig. 2022; 26 (7): 5029—5044. PMID: 35359188
- Vasiliu S., Racovita S., Gugoasa I.A., Lungan M.A., Popa M., Desbrieres J. The benefits of smart nanoparticles in dental applications. Int J Mol Sci. 2021; 22 (5): 2585. PMID: 33806682
- Liu K., He Z., Byrne H.J., Curtin J.F., Tian F. Investigating the role of gold nanoparticle shape and size in their toxicities to fungi. Int J Environ Res Public Health. 2018; 15 (5): E998. PMID: 29772665
- Xie W., Guo Z., et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018; 8 (12): 3284—3307. PMID: 29930730
Downloads
Received
July 11, 2022
Accepted
October 18, 2022
Published on
December 21, 2022