DOI:

10.37988/1811-153X_2025_3_100

Dynamic electrical nerve stimulation as part of rehabilitation in patients with maxillomandibular size and position abnormalities

Authors

  • A.S. Migachev 1, postgraduate at the Maxillofacial surgery Department
    ORCID: 0000-0003-0707-0987
  • A.I. Shaikhaliev 1, Doctor of Science in Medicine, professor of the Maxillofacial surgery Department
    ORCID: 0000-0002-4920-7171
  • A.M. Gusarov 1, PhD in Medical Sciences, associate professor of the Maxillofacial surgery Department
    ORCID: 0000-0002-6583-4685
  • E.V. Safyanova 1, PhD in Medical Sciences, assistant professor of the Maxillofacial surgery Department
    ORCID: 0000-0002-8731-6731
  • A.M. Isagadzhiev 1, postgraduate at the Maxillofacial surgery Department
    ORCID: 0000-0001-5395-3997
  • M.N. Yunusova 2, postgraduate at the Surgical Dentistry and Maxillofacial surgery Department
    ORCID: 0009-0004-8574-1955
  • 1 Sechenov University, 119991, Moscow, Russia
  • 2 Dagestan State Medical University, 367000, Makhachkala, Russia

Abstract

Orthognathic surgery is an invasive procedure accompanied by: impaired sensitivity of the n. alveolaris inferior, severe edema, limited mouth opening and pain. Therefore, an important element of treatment is rehabilitation of patients at the postoperative stage. The goal is to develop and justify the use of the dynamic electrical nerve stimulation (DENS) method to improve the efficiency of rehabilitation of patients after orthognathic surgeries.
Materials and methods.
The study involved 58 patients with skeletal class II (group II) and class III (group III) malocclusions according to Angle’s classification, who were treated at the clinic. During the study, 2 patients were excluded. Patients of the studied subgroups IIA (n=11) and IIIA (n=16) underwent DENS therapy. Patients of the control subgroups IIB (n=13) and IIIB (n=16) underwent standard postoperative rehabilitation. The effectiveness of DENS was assessed by measuring maximal mouth opening and pain intensity using VAS.
Results.
After 1 month, maximal mouth opening was significantly greater in group IIA compared with group IIB (14.9 mm vs. 10.0 mm, p<0.05). Similarly, group IIIA showed greater improvement compared with group IIIB (18.3 mm vs. 13.1 mm, p<0.05). Three months after the operation, patients of group IIA retained a statistically significant greater mouth opening (40.2 versus 36.8 mm; p<0.05). According to the results of pain assessment, patients in subgroups A showed statistically significantly better indicators than patients of the control subgroups B: on the 3rd day after surgery IIA group — 4.3 points, IIB — 5.9 points, IIIA group — 4.8 points, IIIB — 6.2 points; a week after surgery IIA group — 2.4 points, IIB — 3.9 points, IIIA group — 2.1 points, IIIB — 2.9 points; 1 month after surgery IIA group — 1.4 points, IIB — 2.3 points, IIIA group — 1.4 points, IIIB — 2.4 points (p<0.05).
Conclusion.
Dynamic electrical stimulation has a positive effect on the recovery process of patients after orthognathic surgeries: it reduces the level of pain on the visual analogue scale and promotes faster recovery of the maximum mouth opening. Further research is needed to formulate recommendations and optimize the use of DENS in patients after orthognathic surgery.

Key words:

dynamic electrical nerve stimulation, postoperative rehabilitation, orthognathic surgery, masticatory muscles

For Citation

[1]
Migachev A.S., Shaikhaliev A.I., Gusarov A.M., Safyanova E.V., Isagadzhiev A.M., Yunusova M.N. Dynamic electrical nerve stimulation as part of rehabilitation in patients with maxillomandibular size and position abnormalities. Clinical Dentistry (Russia).  2025; 28 (3): 100—105. DOI: 10.37988/1811-153X_2025_3_100

References

  1. Alhammadi M.S., et al. Global distribution of malocclusion traits: A systematic review. Dental Press J Orthod. 2018; 23 (6): 40.e1—40.e10. PMID: 30672991
  2. Conley R.S. Orthognathic surgery past, present, and future. Clinical and Investigative Orthodontics. 2022; 4: 179—186. DOI: 10.1080/27705781.2022.2127606
  3. Tuk J.G., Lindeboom J.A., Tan M.L., de Lange J. Impact of orthognathic surgery on quality of life in patients with different dentofacial deformities: longitudinal study of the Oral Health Impact Profile (OHIP-14) with at least 1 year of follow-up. Oral Maxillofac Surg. 2022; 26 (2): 281—289. PMID: 34324107
  4. Kaur R., et al. Orthognathic surgery. International Journal of Health Sciences. 2021; 352—357. DOI: 10.53730/ijhs.v5nS1.5664
  5. Zaroni F.M., et al. Complications associated with orthognathic surgery: A retrospective study of 485 cases. J Craniomaxillofac Surg. 2019; 47 (12): 1855—1860. PMID: 31813754
  6. Göelzer J.G., et al. Assessing change in quality of life using the Oral Health Impact Profile (OHIP) in patients with different dentofacial deformities undergoing orthognathic surgery: a before and after comparison. Int J Oral Maxillofac Surg. 2014; 43 (11): 1352—9. PMID: 25052573
  7. Seo H.J., Choi Y.K. Current trends in orthognathic surgery. Arch Craniofac Surg. 2021; 22 (6): 287—295. PMID: 34974683
  8. Ivanov S.Yu., et al. New method of correction of inherent and acquired abnormalities of jaws. Medical Almanac. 2015; 3 (38): 168—171 (In Russian). eLIBRARY ID: 24361069
  9. Joachim M.V., et al. Surgical complications of orthognathic surgery. Applied Sciences (Switzerland). 2023; 1: 478. DOI: 10.3390/app13010478
  10. Peleg O., et al. Orthognathic surgery complications: The 10-year experience of a single center. J Craniomaxillofac Surg. 2021; 49 (10): 891—897. PMID: 33994296
  11. Naran S., et al. Current concepts in orthognathic surgery. Plast Reconstr Surg. 2018; 141 (6): 925e—936e. PMID: 29794714
  12. Al-Hiyali A., Ayoub A., Ju X., Almuzian M., Al-Anezi T. The impact of orthognathic surgery on facial expressions. J Oral Maxillofac Surg. 2015; 73 (12): 2380—90. PMID: 26044608
  13. Agbaje J., Luyten J., Politis C. Pain complaints in patients undergoing orthognathic surgery. Pain Res Manag. 2018; 2018: 4235025. PMID: 30123397
  14. Ko E.W., Teng T.T., Huang C.S., Chen Y.R. The effect of early physiotherapy on the recovery of mandibular function after orthognathic surgery for class III correction. Part II: electromyographic activity of masticatory muscles. J Craniomaxillofac Surg. 2015; 43 (1): 138—43. PMID: 25439089
  15. Ohba S., et al. Assessment of skeletal stability of intraoral vertical ramus osteotomy with one-day maxillary-mandibular fixation followed by early jaw exercise. J Craniomaxillofac Surg. 2013; 41 (7): 586—92. PMID: 23347885
  16. Wong N.S.M., Leung Y.Y. Comparison of the quality of life changes of patients receiving sagittal split ramus osteotomy or intraoral vertical subsigmoid osteotomy for mandibular prognathism. Clin Oral Investig. 2023; 27 (4): 1435—1448. PMID: 36881158
  17. Bravo M., Bendersky Kohan J., Uribe Monasterio M. Effectiveness of glucocorticoids in orthognathic surgery: an overview of systematic reviews. Br J Oral Maxillofac Surg. 2022; 60 (2): e231-e245. PMID: 35067412
  18. Korshunov V.V., et al. Controlled local hypothermia in the complex treatment of patients with congenital anomalies of jaw development. Clinical Dentistry (Russia). 2024; 2: 106—110 (In Russian). eLIBRARY ID: 67957624
  19. Szolnoky G., Szendi-Horváth K., Seres L., Boda K., Kemény L. Manual lymph drainage efficiently reduces postoperative facial swelling and discomfort after removal of impacted third molars. Lymphology. 2007; 40 (3): 138—42. PMID: 18062616
  20. Nakao H., et al. Three-dimensional imaging evaluation of facial swelling after orthognathic surgery with compression and Kinesio taping therapy: a randomized clinical trial. Ann Med Surg (Lond). 2024; 86 (3): 1446—1454. PMID: 38463074
  21. Alan H., et al. Evaluation of the effects of the low-level laser therapy on swelling, pain, and trismus after removal of impacted lower third molar. Head Face Med. 2016; 12 (1): 25. PMID: 27457369
  22. Mohajerani S.H., et al. Effect of low-level laser and light-emitting diode on inferior alveolar nerve recovery after sagittal split osteotomy of the mandible: A randomized clinical trial study. J Craniofac Surg. 2017; 28 (4): e408-e411. PMID: 28538060
  23. Ivanova I.V., et al. The use of vitamin D in the rehabilitation of patients after orthognathic surgery. Clinical Dentistry (Russia). 2023; 3: 70—76 (In Russian). eLIBRARY ID: 54509010
  24. Yang H.J., et al. Effects of chewing exerciser on the recovery of masticatory function recovery after orthognathic surgery: A single-center randomized clinical trial, a preliminary study. Medicina (Kaunas). 2020; 56 (9): 483. PMID: 32971764
  25. Dailey D.L., et al. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain. 2013; 154 (11): 2554—2562. PMID: 23900134
  26. Noehren B., et al. Effect of transcutaneous electrical nerve stimulation on pain, function, and quality of life in fibromyalgia: a double-blind randomized clinical trial. Phys Ther. 2015; 95 (1): 129—40. PMID: 25212518
  27. Dhungana M., Krishna H.S., S S. The effectiveness of Transcutaneous Electrical Nerve Stimulation and strengthening exercises on the functional ability of patients with osteoarthritis of the knee joints: A case report. Journal of Sports and Rehabilitation Sciences. 2024; 0: 0 (In). DOI: 10.32598/JSRS.2408.1006
  28. Sjölund B.H. Peripheral nerve stimulation suppression of C-fiber-evoked flexion reflex in rats. Part 2: Parameters of low-rate train stimulation of skin and muscle afferent nerves. J Neurosurg. 1988; 68 (2): 279—83. PMID: 3257521
  29. Sato K.L., et al. Increasing intensity of TENS prevents analgesic tolerance in rats. J Pain. 2012; 13 (9): 884—90. PMID: 22858165
  30. Buonocore M., Camuzzini N., Cecini M., Dalla Toffola E. High-frequency transcutaneous peripheral nerve stimulation induces a higher increase of heat pain threshold in the cutaneous area of the stimulated nerve when confronted to the neighbouring areas. Biomed Res Int. 2013; 2013: 464207. PMID: 24027756
  31. Mendell L.M. Constructing and deconstructing the gate theory of pain. Pain. 2014; 155 (2): 210—216. PMID: 24334188
  32. Aarskog R., et al. Is mechanical pain threshold after transcutaneous electrical nerve stimulation (TENS) increased locally and unilaterally? A randomized placebo-controlled trial in healthy subjects. Physiother Res Int. 2007; 12 (4): 251—63. PMID: 17957730
  33. Kadochnikova E.Y., et al. The effectiveness of dynamic electroneurostimulation (DENS) In the pain management in knee osteoarthritis (results of a multicenter randomized study). Bulletin of Rehabilitation Medicine. 2016; 3 (73): 14—22 (In Russian). eLIBRARY ID: 26366301
  34. Cacho A., et al. Use of transcutaneous electrical nerve stimulation (TENS) for the recovery of oral function after orthognathic surgery. J Clin Med. 2022; 11 (12): 3268. PMID: 35743339
  35. Wen-Ching Ko E., Huang C.S., Lo L.J., Chen Y.R. Longitudinal observation of mandibular motion pattern in patients with skeletal Class III malocclusion subsequent to orthognathic surgery. J Oral Maxillofac Surg. 2012; 70 (2): e158—68. PMID: 22260918
  36. Boyd S.B., Karas N.D., Sinn D.P. Recovery of mandibular mobility following orthognathic surgery. J Oral Maxillofac Surg. 1991; 49 (9): 924—31. PMID: 1886021
  37. Alam M., et al. Effect of transcutaneous electrical nerve stimulation on maximum mouth opening after orthognathic surgery: a randomised controlled trial. Ann Med Surg (Lond). 2024; 86 (11): 6555—6560. PMID: 39525742
  38. Pourdanesh F., et al. Effect of transcutaneous electrical nerve stimulation on neuro-sensory disturbance after orthognathic surgery: a randomized clinical trial. Ann Med Surg (Lond). 2024; 86 (9): 5224—5229. PMID: 39238986
  39. Fagade O.O., et al. Comparative study of the therapeutic effect of a systemic analgesic and transcutaneous electrical nerve stimulation (TENS) on post-IMF trismus and pain in Nigerian patients. Niger Postgrad Med J. 2005; 12 (2): 97—101. PMID: 15997257

Received

February 20, 2025

Accepted

September 4, 2025

Published on

September 21, 2025