DOI:

10.37988/1811-153X_2025_1_186

Comparative characteristics of antimicrobial properties of titanium dioxide coating in the anatase form on the surface of titanium and its alloys

Authors

  • T.V. Tsareva 1, PhD in Medical Sciences, associate professor of the Microbiology, virology, immunology Department
    ORCID: 0000-0001-9571-0520
  • E.V. Ippolitov 1, PhD in Medical Sciences, professor, leading researcher of the Molecular biology research Laboratory
    ORCID: 0000-0003-1737-0887
  • M.G. Kozodaev 2, PhD in Physical and Mathematical Sciences, senior researcher at the Center of shared facilities in nanotechnology
    ORCID: 0000-0003-2318-6832
  • V.V. Tsareva 1, researcher at the Laboratory of experimental and clinical ophthalmology
    ORCID: 0000-0002-1287-7251
  • M.S. Podporin 1, PhD in Medical Sciences, researcher at the Molecular biology research Lab
    ORCID: 0000-0001-6785-0016
  • V.N. Tsarev 1, Doctor of Science in Medicine, full professor of the Microbiology, virology, immunology department, director of the Medico-dental research Institute
    ORCID: 0000-0002-3311-0367
  • 1 Russian University of Medicine, 127006, Moscow, Russia
  • 2 MIPT, 141701, Dolgoprudny, Russia

Abstract

Products from titanium and its alloys are actively used for the reconstruction of the musculoskeletal and maxillofacial systems of the body. However, in some cases, their rejection is observed, which is associated with the addition of bacterial infections. To accelerate the process of osseointegration, various methods of surface treatment are used, including sandblasting, which creates a certain microrelief, as well as the deposition of a bioactive coating of titanium dioxide (TiO2) with the anatase structure. Since the method of TiO2 formation, namely atomic layer deposition (ALD), has a certain sensitivity to the structure and chemistry of the initial surface, especially in the low-thickness range, the characteristics of the coating may depend on the implant material. Therefore, the purpose of this study is to evaluate the antiadhesive and antimicrobial properties of titanium and its alloy samples, taking into account the differences in their structure and type of surface treatment, including the formation of a TiO2 coating with anatase crystalline structure.
Materials and methods.
In order to quantitatively evaluate the in vitro microbial adhesion to samples of Grade 4 titanium (ASTM F67) and Ti6Al4V (ASTM F136)/Ti6Al7Nb (ASTM F1295) alloys with different surface treatments, authors used microbiological, molecular biological methods and statistical analysis.
Results.
The work studies samples of titanium and its alloys with various surface preparation, that can be used for orthopedic treatment. Comparative assessment was carried out for the first time which included adhesion of sanitary-significant microorganisms (for example, S. aureus, E. coli) and anaerobic bacteria to the studied samples. The lowest level of adhesion was observed on Ti6Al4V samples coated with TiO2, which indicates their bactericidal and fungicidal properties. Samples containing niobium (Ti6Al7Nb) showed selective anti-adhesive properties, which confirms their activity against viable microbial cells.
Conclusions.
The results highlight the potential effectiveness of TiO2 coating with anatase crystalline structure for utilization in medical implants and structures.

Key words:

titanium oxide, crystal structure, anatase, microbes adhesion, anaerobic species, yeast fungi

For Citation

[1]
Tsareva T.V., Ippolitov E.V., Kozodaev M.G., Tsareva V.V., Podporin M.S., Tsarev V.N. Comparative characteristics of antimicrobial properties of titanium dioxide coating in the anatase form on the surface of titanium and its alloys. Clinical Dentistry (Russia).  2025; 28 (1): 186—195. DOI: 10.37988/1811-153X_2025_1_186

References

  1. Pohodenko-Chudakova I.O., Savich A.O. New perspectives in research on the use of implantation materials in oral surgery and maxillofacial surgery. Medical Newsletter of Vyatka. 2021; 1 (69): 91—95 (In Russian). eLIBRARY ID: 44882346
  2. Haleem A., Javaid M., Singh R.P., Rab S., Suman R. Applications of nanotechnology in medical field: a brief review. Global Health Journal. 2023; 2: 70—77. DOI: 10.1016/j.glohj.2023.02.008
  3. Shulyatnikova O., Rogozhnikov G., Porozova S., Rogoznikov A., Leushina E. Functional nanostructured materials based on titanium dioxide for use in orthopedic dentistry. Actual Problems in Dentistry. 2020; 1: 171—177 (In Russian). eLIBRARY ID: 42817268
  4. Kulikova A.A., Nikolaeva A.D., Zablotskaya N.V., Blinova A.V., Rumyantsev V.A., Bityukova E.V. Modern nanomaterials and nanomedications in dentistry: literature review. Upper Volga Medical Journal. 2020; 2: 16—20 (In Russian). eLIBRARY ID: 43791532
  5. Yanushevich O.O., Akhmedov G.V., Panin A.M., Arutyunov S.V., Tsarev V.N. Microecology of the oral cavity and infectious and inflammatory complications in surgical dentistry. Moscow: Practical Medicine, 2019. Pp. 125—1 (In Russian).
  6. Zhou N., Huang H., Liu H., Li Q., Yang G., Zhang Y., Ding M., Dong H., Mou Y. Microbiota analysis of peri-implant mucositis in patients with periodontitis history. Clin Oral Investig. 2022; 26 (10): 6223—6233. PMID: 35672515
  7. Daudova A.D., Demina J.Z., Genatullina G.N., Abdrakhmanova R.O., Baeva G.R., Yasenyavskaya A.L., Rubalsky O.V. Antibacterial Resistance. The Challenge of Modernity. Antibiotics and Chemotherapy. 2023; 3—4: 66—75 (In Russian). eLIBRARY ID: 54127185
  8. Smirnov G.B. Bacterial drug-resistance. Molecular Genetics, Microbiology and Virology. 2024; 3: 43—48 (In Russian). eLIBRARY ID: 72893441
  9. Rather M.A., Gupta K., Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021; 52 (4): 1701—1718. PMID: 34558029
  10. Straumal B.B., Gornakova A.S., Kilmametov A.R., Rabkin E., Anisimova N.Yu., Kiselevsky M.V. Β-Ti-based alloys for medical applications. Izvestiya. Non-Ferrous Metallurgy. 2020; 6: 52—64 (In Russian). eLIBRARY ID: 44388934
  11. Jafari S., Mahyad B., Hashemzadeh H., Janfaza S., Gholikhani T., Tayebi L. Biomedical applications of TiO2 nanostructures: Recent advances. Int J Nanomedicine. 2020; 15: 3447—3470. PMID: 32523343
  12. Svetlakova A.V., Sanchez Mendez M., Tuchina E.S., Khodan A.N., Traore M., Azouani R., Kanev A., Tuchin V.V. Study of the photocatalytic antimicrobial activity of nanocomposites based on TiO2–Al2O3 under the action of LED radiation (405 nm) on Staphylococci. Optics and Spectroscopy. 2021; 129: 846—850. DOI: 10.1134/S0030400X21060175
  13. Ikram M., Hassan J., Raza A., Haider A., Naz S., Ul-Hamid A., Haider J., Shahzadi I., Qamar U., Ali S. Photocatalytic and bactericidal properties and molecular docking analysis of TiO2 nanoparticles conjugated with Zr for environmental remediation. RSC Adv. 2020; 10 (50): 30007—30024. PMID: 35518250
  14. Gartner M., Szekeres A., Stroescu H., Mitrea D., Covei M.Advanced nanostructured coatings based on doped TiO2 for various applications. Molecules. 2023; 28 (23): 7828. PMID: 38067557
  15. Wu S., Xu J., Zou L., Luo S., Yao R., Zheng B., Liang G., Wu D., Li Y. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nat Commun. 2021; 12 (1): 3303. PMID: 34083518
  16. Ilyina T.S., Romanova Yu.M. Bacterial biofilms: their role in chronical infection processes and the means to combat them. Molecular Genetics, Microbiology and Virology. 2021; 2: 14—24 (In Russian). eLIBRARY ID: 46239874
  17. Rogacheva E.V. Antibacterial properties of new chemical compounds of natural and synthetic origin in relation to ESKAPE group bacteria: dissertation abstract: master’s thesis abstract. Moscow: RUDN University, 2024. 23 p. (In Russian).
  18. Tsarev V.N., Podporin M.S., Tsareva T.V., Tsareva V.V., Kozodaev M.G., Ippolitov E.V. Antiadhesive and antimicrobial effect of titanium oxide coating with anatase structure in in vitro experiments for medical implants. Clinical Dentistry (Russia). 2024; 3: 6—13 (In Russian). eLIBRARY ID: 71035211
  19. Tsarev V.N., Stepanov A.G., Ippolitov E.V., Podporin M.S., Tsareva T.V. Control of primary adhesion of microorganisms and formation of biofilms on stomatological materials used for transdental implantation in dental stabilizing operations. Russian Clinical Laboratory Diagnostics. 2018; 9: 568—573 (In Russian). eLIBRARY ID: 36510269
  20. Tsarev V.N., Ippolitov E.V., Trefilov A.G., Arutyunov S.D., Pivovarov A.A. Features of adhesion of anaerobic periodontopathogenic bacteria and Candida albicans fungi to experimental samples of basis dental plastic depending on surface roughness and polishing method. Journal of Microbiology, Epidemiology and Immunobiology. 2014; 6: 21—27 (In Russian). eLIBRARY ID: 23492909
  21. Nazarov D., Kozlova L., Rudakova A., Zemtsova E., Yudintceva N., Ovcharenko E., Koroleva A., Kasatkin I., Kraeva L., Rogacheva E., Maximov M. Atomic layer deposition of chlorine containing titanium—zinc oxide nanofilms using the supercycle approach. Coatings. 2023; 5: 960. DOI: 10.3390/coatings13050960
  22. Ivanov S.Yu., Karasenkov Ya.N., Latuta N.V., Dzhatdaev V.V., Egorov E.A., Tarasova E.K., Kozlova E.V., Kozlov P.A. Application of metal nanoparticles and their oxides in dental composite materials and structures: A review (part I). Clinical Dentistry (Russia). 2022; 4: 159—165 (In Russian). eLIBRARY ID: 49940631
  23. Ivanov S.Yu., Tsarev V.N., Ivashkevich S.G., Chuvilkin V.I., Alyoshin N.A. Evaluation of the degree of adhesion of oral bacteria to the electret surface of dental implants. The Dental Institute. 2006; 2 (31): 40—41 (In Russian). eLIBRARY ID: 14343848
  24. Naikoo G., Al-Mashali F., Arshad F., Al-Maashani N., Hassan I.U., Al-Baraami Z., Faruck L.H., Qurashi A., Ahmed W., Asiri A.M., Aljabali A.A., Bakshi H.A., Tambuwala M.M. An overview of copper nanoparticles: Synthesis, characterisation and anticancer activity. Curr Pharm Des. 2021; 27 (43): 4416—4432. PMID: 34348615
  25. Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020; 15: 2555—2562. PMID: 32368040
  26. Gorbachev S.A., Osovskaya I.I. Titanium dioxide. Increasing its photocatalytic activity: a textbook. Saint-Petersburg: Saint Petersburg State University of Industrial Technologies and Design, 2019. 24 p. DOI: 10.23682/102511
  27. Sadoon A.A., Khadka P., Freeland J., Gundampati R.K., Manso R.H., Ruiz M., Krishnamurthi V.R., Thallapuranam S.K., Chen J., Wang Y. Silver ions caused faster diffusive dynamics of histone-like nucleoid-structuring proteins in live bacteria. Appl Environ Microbiol. 2020; 86 (6): e02479—19. PMID: 31953329
  28. Shetnev A., Tarasenko M., Kotlyarova V., Baykov S., Geyl K., Kasatkina S., Sibinčić N., Sharoyko V., Rogacheva E.V., Kraeva L.A. External oxidant-free and transition metal-free synthesis of 5-amino-1,2,4-thiadiazoles as promising antibacterials against ESKAPE pathogen strains. Mol Divers. 2023; 27 (2): 651—666. PMID: 35639224

Received

October 19, 2024

Accepted

March 5, 2025

Published on

April 7, 2025