DOI:

10.37988/1811-153X_2024_4_132

Microrelief of dental implants when using a scaffold based on a collagen matrix

Authors

  • S.V. Sirak 1, Doctor of Science in Medicine, full professor of the Dentistry Department
    ORCID: 0000-0002-4924-5792
  • A.V. Arutyunov 2, Doctor of Science in Medicine, associate professor and head of the General dentistry Department
    ORCID: 0000-0001-8823-1409
  • M.G. Perikova 1, PhD in Medical Sciences, associate professor of the Dentistry Department
    ORCID: 0000-0001-7004-3581
  • V.N. Lenev 1, PhD in Medical Sciences, associate professor of the Dentistry Department
    ORCID: 0009-0000-5738-5501
  • N.I. Bykova 2, PhD in Medical Sciences, associate professor of the Dentistry Department
    ORCID: 0000-0002-0573-7242
  • O.N. Risovannaya 2, Doctor of Science in Medicine, associate professor of the of Dentistry Department
    ORCID: 0000-0001-9585-4444
  • V.B. Shovgenov 1, postgraduate at the General dentistry Department
    ORCID: 0009-0004-8520-1246
  • A.A. Ovsyannikova 1, PhD in Medical Sciences, associate professor of the General dentistry Department
    ORCID: 0000-0003-1262-1472
  • I.I. Kartashevsky 1, laboratory assistant at the General dentistry Department
    ORCID: 0000-0001-5725-6902
  • 1 Stavropol State Medical University, 355017, Stavropol, Russia
  • 2 Kuban State Medical University, 350063, Krasnodar, Russia

Abstract

The surface of the dental implant, having a developed microrelief and pronounced roughness, contributes to better biological compatibility with the bone tissue, reduces the risk of rejection. Properly selected microrelief of the dental implant can reduce the risk of bacterial contamination and development of inflammatory processes, thus contributing to the prevention of peri-implantitis. The aim is to carry out the comparative experimental analysis of the microrelief and elemental composition of the threaded part of the dental implants used with the scaffold on the basis of the collagen matrix.
Materials and methods.
Six year-old sheep (rams) were used and 12 dental implants were placed under the radiologic control. Depending on the type of implants the animals were divided into 3 groups: I — 4 implants Mis (Israel) made of titanium alloy with reduced content of oxygen, nitrogen, carbon and iron (Ti6Al4V ELI) together with scaffold on the basis of collagen matrix; II — Osstem (South Korea) with ultrahydrophilic surface of TS-III CA series together with scaffold on the basis of collagen matrix; III (control) — machine-processed implants Endure (USA). At 3 months after surgery, metal-ceramic crowns were fabricated and inserted into the bite. After 12 and 24 months the implants were removed together with the surrounding tissues and sent for microscopic and histologic examination.
Results.
On the cutting surface of the implants of group I and II the highly organized bone tissue was revealed, the composition of which was dominated by oxygen, carbon, calcium and phosphorus. In the samples of the control group the coarse-fiber tissue with high content of carbon and oxygen was found, which is more typical for the unformed bone tissue. Osseointegration with bone to dental implant surfaces in Group I and in Group II (316.4 and 288.7 kN; p<0.001) was stronger than fixation to machine-processed titanium (78.4±10.4 kN; p<0.002). This was confirmed by a much higher force required to separate the implant from the bone, as well as by a greater number of retention points of bone tissue contacts with the surface of the dental implant.
Conclusion.
The use of the dental implants with the developed microrelief and modified surface together with the scaffold on the basis of the collagen matrix provides more complete osseointegration in comparison with the dental implants of the machine processing. It is confirmed by the histologic picture and microelement composition at operation of the dental implants during 12 and 24 months. In the same terms in the control group qualitative characteristics and microelement composition of the samples of dental implants testified to the low level of mineralization.

Key words:

dental implant, surface, osseointegration, microrelief, scaffold, experiment, microelement composition

For Citation

[1]
Sirak S.V., Arutyunov A.V., Perikova M.G., Lenev V.N., Bykova N.I., Risovannaya O.N., Shovgenov V.B., Ovsyannikova A.A., Kartashevsky I.I. Microrelief of dental implants when using a scaffold based on a collagen matrix. Clinical Dentistry (Russia).  2024; 27 (4): 132—139. DOI: 10.37988/1811-153X_2024_4_132

References

  1. Ivanov S.Yu., Karasenkov Ya.N., Latuta N.V., Dzhatdaev V.V., Egorov E.A., Tarasova E.K., Kozlova E.V., Kozlov P.A. Application of metal nanoparticles and their oxides in dental composite materials and structures: A review (part I). Clinical Dentistry (Russia). 2022; 4: 159—165 (In Russian). eLIBRARY ID: 49940631
  2. Murzabekov A.I., Muraev A.A., Mukhametshin R.F., Kim E.V., Ivanov S.Y., Klimenkov V.A. Results of application of the IRIS dental implants with the surface modified by the method of plasma electrolytic oxidation. Medical alphabet. 2024; 1: 77—83 (In Russian). eLIBRARY ID: 65365143
  3. Hammouri M.H., Salekh K.M. Dental implants osseointegration in patients with osteoporosis. RUDN Journal of Medicine. 2022; 4: 422—430. DOI: 10.22363/2313-0245-2022-26-4-422-430
  4. Zhao F., Yang Z., Liu L., Chen D., Shao L., Chen X. Design and evaluation of a novel sub-scaffold dental implant system based on the osteoinduction of micro-nano bioactive glass. Biomater Transl. 2020; 1 (1): 82—88. PMID: 35837658
  5. Kulakov A.A., Grebnev G.A., Brailovskaya T.V., Bagnenko A.S., Ilyin S.V., Ishniyazova A.I. Long-term results of dental implantation in military personnel. Stomatology. 2022; 2: 31—35 (In Russian). eLIBRARY ID: 48239903
  6. Asa’ad F., Pagni G., Pilipchuk S.P., Giannì A.B., Giannobile W.V., Rasperini G. 3D-printed scaffolds and biomaterials: Review of alveolar bone augmentation and periodontal regeneration applications. Int J Dent. 2016; 2016: 1239842. PMID: 27366149
  7. Vasilyev A.V., Kuznetsova V.S., Bukharova T.B., Grigoriev T.E., Zagoskin Y.D., Babichenko I.I., Chvalun S.N., Goldstein D.V., Losev F.F., Kulakov A.A. Composition based on reacetylated chitosan-glycerophosphate hydrogel with highly porous PLA granules and BMP-2 for bone regeneration. Genes and Cells. 2022; 3: 41—42 (In Russian). eLIBRARY ID: 49902424
  8. Titsinides S., Agrogiannis G., Karatzas T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Jpn Dent Sci Rev. 2019; 55 (1): 26—32. PMID: 30733842
  9. Maiorana C., Poli P.P., Mascellaro A., Ferrario S., Beretta M. Dental implants placed in resorbed alveolar ridges reconstructed with iliac crest autogenous onlay grafts: A 26-year median follow-up retrospective study. J Craniomaxillofac Surg. 2019; 47 (5): 805—814. PMID: 30797661
  10. Li J., Jansen J.A., Walboomers X.F., van den Beucken J.J. Mechanical aspects of dental implants and osseointegration: A narrative review. J Mech Behav Biomed Mater. 2020; 103: 103574. PMID: 32090904
  11. Rubnikovich S.P., Khomich I.S. Regenerative dental technologies in complex surgical and prosthetic rehabilitation of patients with dentition defects. Dentist (Minsk). 2020; 2 (37): 38—50 (In Russian). eLIBRARY ID: 42970311
  12. Lee H., Kim E.Y., Lee U.L. Vertical augmentation of a severely atrophied posterior mandibular alveolar ridge for a dental implant using a patient-specific 3D printed PCL/BGS7 scaffold: A technical note. J Stomatol Oral Maxillofac Surg. 2023; 124 (2): 101297. PMID: 36195533
  13. Lukin I., Erezuma I., Maeso L., Zarate J., Desimone M.F., Al-Tel T.H., Dolatshahi-Pirouz A., Orive G. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics. 2022; 14 (6): 1177. PMID: 35745750
  14. Jeong H.J., Gwak S.J., Seo K.D., Lee S., Yun J.H., Cho Y.S., Lee S.J. Fabrication of three-dimensional composite scaffold for simultaneous alveolar bone regeneration in dental implant installation. Int J Mol Sci. 2020; 21 (5): 1863. PMID: 32182824
  15. Yu F., Geng D., Kuang Z., Huang S., Cheng Y., Chen Y., Leng F., Bei Y., Zhao Y., Tang Q., Huang Y., Xiang Q. Sequentially releasing self-healing hydrogel fabricated with TGFβ3-microspheres and bFGF to facilitate rat alveolar bone defect repair. Asian J Pharm Sci. 2022; 17 (3): 425—434. PMID: 35782329
  16. Hung K.S., Chen M.S., Lan W.C., Cho Y.C., Saito T., Huang B.H., Tsai H.Y., Hsieh C.C., Ou K.L., Lin H.Y. Three-dimensional printing of a hybrid bioceramic and biopolymer porous scaffold for promoting bone regeneration potential. Materials (Basel). 2022; 15 (5): 1971. PMID: 35269209
  17. Stafin K., Śliwa P., Piątkowski M. Towards polycaprolactone-based scaffolds for alveolar bone tissue engineering: A biomimetic approach in a 3D printing technique. Int J Mol Sci. 2023; 24 (22): 16180. PMID: 38003368
  18. von Stein-Lausnitz M., Nickenig H.J., Wolfart S., Neumann K., von Stein-Lausnitz A., Spies B.C., Beuer F. Survival rates and complication behaviour of tooth implant-supported, fixed dental prostheses: A systematic review and meta-analysis. J Dent. 2019; 88: 103167. PMID: 31306691
  19. Zekiy A.O. An improvement of dental implant osseointegration with nano-size coating. The Dental Institute. 2017; 2 (75): 46—49 (In Russian). eLIBRARY ID: 29436545

Received

April 21, 2024

Accepted

November 10, 2024

Published on

December 17, 2024