DOI:
10.37988/1811-153X_2024_4_114The search for the optimal object for determining the primary stability of dental implants in the framework of an experimental study
Downloads
Abstract
In the study of dental implants, one of the objectives is often to determine indicators of primary stability. However, this is not always possible during implant placement. Due to this fact the specialists face the task of searching for the optimal model for determining the primary stability of the dental implants within the framework of the experimental research. The article systematizes and summarizes the data of literature sources as well as the results of our own research in relation to the choice of the model for studying the primary stability of dental implants.Conclusion.
When studying the primary stability parameters with the use of low-density bone the optimal object is the materials of animal origin with the dissected cortical component, for example, the breastbone of sheep or pigs. If it is necessary to study the primary stability with a more dense bone structure, the use of pig tibia is recommended.
Key words:
implantation, primary stability, experiment, minipigs, synthetic blocksFor Citation
[1]
Badalyan V.A., Levonian E.A., Kudzaev B.A. The search for the optimal object for determining the primary stability of dental implants in the framework of an experimental study. Clinical Dentistry (Russia). 2024; 27 (4): 114—121. DOI: 10.37988/1811-153X_2024_4_114
References
- Liu Y., Rath B., Tingart M., Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A. 2020; 108 (3): 470—484. PMID: 31664764
- Ziebart J., et al. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res. 2018; 7 (2): 187—195. PMID: 29682285
- Kohli N., Stoddart J.C., van Arkel R.J. The limit of tolerable micromotion for implant osseointegration: a systematic review. Sci Rep. 2021; 11 (1): 10797. PMID: 34031476
- Ivaschenko A.V., Yablokov A.E., Markov I.I., Monakov V.A., Nesterov A.M. Features of trophism of bone tissue after the installation of dental implants. Bulletin of Medical Institute “REAVIZ”: Rehabilitation, Doctor and Health. 2021; 3 (51): 79—84 (In Russian). eLIBRARY ID: 46245352
- Kulakov A.A., Kasparov A.S., Porfenchuk D.A. Factors affecting osteointegration and the use of early functional load to reduce the duration of treatment in dental implantation. Stomatology. 2019; 4: 107—115 (In Russian). eLIBRARY ID: 39548529
- Ancuta D.L., Coman C., Alexandru D.M., Crivineanu M. Animal models used in testing the biocompatibility of the dental implant — A review. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine. 2020; 77 (2): 1—6. DOI: 10.15835/buasvmcn-vm:2020.0020
- Blanc-Sylvestre N., Bouchard P., Chaussain C., Bardet C. Pre-clinical models in implant dentistry: Past, present, future. Biomedicines. 2021; 9 (11): 1538. PMID: 34829765
- de Macedo Bernardino I. de Lima Farias I., Cardoso A.M.R, Xavier A.F.C., Calvalcanti A.L. Use of animal models in experimental research in dentistry in Brazil. Pesquisa Brasileira em Odontopediatria e Clínica Integrada. 2014; 14 (1): 17—21.
- Ananeva A.Sh., Baraeva L.M., Bykov I.M., Verevkina Yu.V., Kurzanov A.N. Modeling of bone injuries in animal experiments. Innovative Medicine of Kuban. 2021; 1 (21): 47—55 (In Russian). eLIBRARY ID: 44817850
- Zhang Z., Gan Y., Guo Y., Lu X., Li X. Animal models of vertical bone augmentation (Review). Exp Ther Med. 2021; 22 (3): 919. PMID: 34335880
- Toder M.M., Shevela A.A., Shevela A.I., Mayborodin I.V. The detailed protocol of experimental works on rabbits: intrabone introduction of metal implants. Modern Problems of Science and Education. 2017; 3: 17 (In Russian). eLIBRARY ID: 29452278
- Meng X., Ziadlou R., Grad S., Alini M., Wen C., Lai Y., Qin L., Zhao Y., Wang X. Animal models of osteochondral defect for testing biomaterials. Biochem Res Int. 2020; 2020: 9659412. PMID: 32082625
- Mangione F., Salmon B., EzEldeen M., Jacobs R., Chaussain C., Vital S. Characteristics of large animal models for current cell-based oral tissue regeneration. Tissue Eng Part B Rev. 2022; 28 (3): 489—505. PMID: 33882717
- Dolzhikov A.A., Dolzhikova I.N. The problem of experimental model choice in biomedical researches of implants (review). Research Results in Biomedicine. 2018; 3: 49—62 (In Russian). eLIBRARY ID: 36808913
- Aksel H., Huang G.T. Human and swine dental pulp stem cells form a vascularlike network after angiogenic differentiation in comparison with endothelial cells: A quantitative analysis. J Endod. 2017; 43 (4): 588—595. PMID: 28258811
- Kochetkova T., Groetsch A., Indermaur M., Peruzzi C., Remund S., Neuenschwander B., Bellon B., Michler J., Zysset P., Schwiedrzik J. Assessing minipig compact jawbone quality at the microscale. J Mech Behav Biomed Mater. 2022; 134: 105405. PMID: 35947925
- Sparks D.S., Saifzadeh S., Savi F.M., Dlaska C.E., Berner A., Henkel J., Reichert J.C., Wullschleger M., Ren J., Cipitria A., McGovern J.A., Steck R., Wagels M., Woodruff M.A., Schuetz M.A., Hutmacher D.W. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat Protoc. 2020; 15 (3): 877—924. PMID: 32060491
- Fabbro M.D., Taschieri S., Canciani E., Addis A., Musto F., Weinstein R., Dellavia C. Osseointegration of titanium implants with different rough surfaces: A histologic and histomorphometric study in an adult minipig model. Implant Dent. 2017; 26 (3): 357—366. PMID: 28234707
- Seo D.J., Moon S.Y., You J.S., Lee W.P., Oh J.S. The effect of under-drilling and osseodensification drilling on low-density bone: A comparative ex vivo study. Applied Sciences. 2022; 12 (3): 1163. DOI: 10.3390/app12031163
- Smbatian B.S., Volkov A.V., Omarov T.V., Lomakin M.V. The study of osteointegration of KONMET implants having the bioactive surface. Russian Stomatology. 2014; 4: 15—24 (In Russian). eLIBRARY ID: 23052148
- Orlando F., Arosio F., Arosio P., Di Stefano D.A. Bone density and implant primary stability. A study on equine bone blocks. Dent J (Basel). 2019; 7 (3): 73. PMID: 31266214
- Comuzzi L., Tumedei M., Pontes A.E., Piattelli A., Iezzi G. Primary stability of dental implants in low-density (10 and 20 pcf) polyurethane foam blocks: Conical vs cylindrical implants. Int J Environ Res Public Health. 2020; 17 (8): 2617. PMID: 32290361
- de Carvalho Formiga M., Gehrke A.F., De Bortoli J.P., Gehrke S.A. Can the design of the instruments used for undersized osteotomies influence the initial stability of implants installed in low-density bone? An in vitro pilot study. PLoS One. 2021; 16 (10): e0257985. PMID: 34618848
Downloads
Received
August 20, 2024
Accepted
October 7, 2024
Published on
December 17, 2024