DOI:

10.37988/1811-153X_2024_2_46

Antibacterial properties of polyetheretherketone against Staphylococcus aureus in vitro

Authors

  • A.Yu. Turkina 1, PhD in Medical Sciences, associate professor of the Therapeutic dentistry Department, deputy director of the Institute of Dentistry
    ORCID ID: 0000-0003-2852-0051
  • V.V. Shelkova 2, researcher at the Biomedical research Laboratory
    ORCID ID: 0000-0001-9173-5464
  • I.M. Makeeva 1, PhD in Medical Sciences, full professor of the Therapeutic dentistry Department
    ORCID ID: 0000-0002-7878-0452
  • N.A. Yanova 3, PhD in Medical Sciences, associate professor of the Clinical dentistry Department
    ORCID ID: 0000-0002-3436-5150
  • A.A. Plishkina 3, PhD in Medical Sciences, associate professor of the Clinical dentistry Department
    ORCID ID: 0000-0002-2124-9740
  • A.V. Yartseva 4, PhD in Medical Sciences, associate professor of the Pain management in dentistry Department
    ORCID ID: 0000-0002-0379-0015
  • Z.T. Aymaletdinova 5, assistant at the Dentistry diseases propaedeutics Department
    ORCID ID: 0000-0002-6187-564X
  • D.S. Leonov 1, assistant at the Operative surgery and topographic anatomy Department
    ORCID ID: 0009-0008-6855-2860
  • Yu.L. Vasil’ev 1, PhD in Medical Sciences, full professor of the Operative surgery and topographic anatomy Department
    ORCID ID: 0000-0003-3541-6068
  • 1 Sechenov University, 119991, Moscow, Russia
  • 2 Moscow Regional Research Clinical Institute (MONIKI), 129110, Moscow, Russia
  • 3 Lobachevsky University, 603022, Nizhny Novgorod, Russia
  • 4 Russian University of Medicine, 127006, Moscow, Russia
  • 5 RUDN University, 117198, Moscow, Russia

Abstract

Polyetheretherketone (PEEK) is one of the promising structural materials in dentistry. Given the high risk of colonization of prostheses by opportunistic microflora, an assessment of biofilm formation on the surface of the material is necessary. The purpose of the study is to assess the biofilm formation of S. aureus on the surface of PEEK, as well as to assess the antibacterial properties of the material during air contamination.
Materials and methods.
To form biofilms, a suspension of microorganisms in broth with a concentration of 1.5·108 CFU/ml was used with an exposure of 24 hours; biofilm formation was determined with a photocolorimeter (540 nm). For airborne contamination, samples were placed in a nonsterile room for 1 hour, then imprinted onto agar, washed, and plated on sterile agar medium. The thermoplastic polymer with a linear structure, polystyrene, was chosen as a material for comparison.
Results.
The ability to form biofilms was assessed with OD control = 0.47 and OD test sample = 0.19. PEEK samples, in comparison with control samples, demonstrate an inability to form biofilms on their surface. In case of air contamination, no colonies of microorganisms were detected on the PEEK print; 1.3±0.4 CFU were detected on the surface of the control sample. 16.6±2.8 CFU were detected in the PEEK washout versus 60.2±8.6 CFU in the washout of the comparison sample, which is 26.3% of the control number of colonies on the Petri dish.
Conclusion.
The PEEK polymer material is resistant to contamination by S. aureus cell cultures in comparison with the control polymer material.

Key words:

polyetheretherketone, biofilm formation, antibacterial properties, Staphylococcus aureus

For Citation

[1]
Turkina A.Yu., Shelkova V.V., Makeeva I.M., Yanova N.A., Plishkina A.A., Yartseva A.V., Aymaletdinova Z.T., Leonov D.S., Vasil’ev Yu.L. Antibacterial properties of polyetheretherketone against Staphylococcus aureus in vitro. Clinical Dentistry (Russia).  2024; 27 (2): 46—51. DOI: 10.37988/1811-153X_2024_2_46

References

  1. Panayotov I.V., Orti V., Cuisinier F., Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016; 27 (7): 118. PMID: 27259708
  2. Alexakou E., Damanaki M., Zoidis P., Bakiri E., Mouzis N., Smidt G., Kourtis S. PEEK high performance polymers: A review of properties and clinical applications in prosthodontics and restorative dentistry. Eur J Prosthodont Restor Dent. 2019; 27 (3): 113—121. PMID: 31433133
  3. Montaño-Machado V., Chevallier P., Bonilla-Gameros L., Copes F., Quarta C., Kú-Herrera J.J., Soriano F., Padilla-Gainza V., Morales G., Mantovani D. Development of multifunctional materials based on poly (ether ether ketone) with Improved biological performances for dental applications. Materials (Basel). 2021; 14 (4): 1047. PMID: 33672249
  4. Parate K.P., Naranje N., Vishnani R., Paul P. Polyetheretherketone material in dentistry. Cureus. 2023; 15 (10): e46485. PMID: 37927628
  5. Mohd Farid D.A., Zahari N.A.H., Said Z., Ghazali M.I.M., Hao-Ern L., Mohamad Zol S., Aldhuwayhi S., Alauddin M.S. Modification of polymer based dentures on biological properties: Current update, status, and findings. Int J Mol Sci. 2022; 23 (18): 10426. PMID: 36142344
  6. Garbacz K., Kwapisz E., Wierzbowska M. Denture stomatitis associated with small-colony variants of Staphylococcus aureus: a case report. BMC Oral Health. 2019; 19 (1): 219. PMID: 31604449
  7. Baena-Monroy T., Moreno-Maldonado V., Franco-Martínez F., Aldape-Barrios B., Quindós G., Sánchez-Vargas L.O. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med Oral Patol Oral Cir Bucal. 2005; 10 Suppl1: E27—39. PMID: 15800465
  8. Kwapisz E., Garbacz K., Kosecka-Strojek M., Schubert J., Bania J., Międzobrodzki J. Presence of EGC-positive major clones ST 45, 30 and 22 among methicillin-resistant and methicillin-susceptible oral Staphylococcus aureus strains. Sci Rep. 2020; 10 (1): 18889. PMID: 33144661
  9. Roberts M.C., Soge O.O., Horst J.A., Ly K.A., Milgrom P. Methicillin-resistant Staphylococcus aureus from dental school clinic surfaces and students. Am J Infect Control. 2011; 39 (8): 628—632. PMID: 21962840
  10. Marchi-Alves L.M., Freitas D., de Andrade D., de Godoy S., Toneti A.N., Mendes I.A.C. Characterization of oral microbiota in removable dental prosthesis users: Influence of arterial hypertension. Biomed Res Int. 2017; 2017: 3838640. PMID: 28713826
  11. D’Ambrosio F., Santella B., Di Palo M.P., Giordano F., Lo Giudice R. Characterization of the oral microbiome in wearers of fixed and removable implant or non-implant-supported prostheses in healthy and pathological oral conditions: A narrative review. Microorganisms. 2023; 11 (4): 1041. PMID: 37110463
  12. Le Bars P., Kouadio A.A., Amouriq Y., Bodic F., Blery P., Bandiaky O.N. Different polymers for the base of removable dentures? Part II: A narrative review of the dynamics of microbial plaque formation on dentures. Polymers (Basel). 2023; 16 (1): 40. PMID: 38201705
  13. Alfouzan A.F., Tuwaym M., Aldaghri E.N., Alojaymi T., Alotiabi H.M., Taweel S.M.A., Al-Otaibi H.N., Ali R., Alshehri H., Labban N. Efficacy of denture cleansers on microbial adherence and surface topography of conventional and CAD/CAM-processed denture base resins. Polymers (Basel). 2023; 15 (2): 460. PMID: 36679340
  14. Vulović S., Todorović A., Stančić I., Popovac A., Stašić J.N., Vencl A., Milić-Lemić A. Study on the surface properties of different commercially available CAD/CAM materials for implant-supported restorations. J Esthet Restor Dent. 2022; 34 (7): 1132—1141. PMID: 35997320
  15. Hahnel S., Wieser A., Lang R., Rosentritt M. Biofilm formation on the surface of modern implant abutment materials. Clin Oral Implants Res. 2015; 26 (11): 1297—301. PMID: 25060652
  16. D’Ercole S., Cellini L., Pilato S., Di Lodovico S., Iezzi G., Piattelli A., Petrini M. Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology. J Mater Sci Mater Med. 2020; 31 (10): 84. PMID: 32989624
  17. Nikolenko D.A., Utyuzh A.S., Tsarev V.N., Yumashev A.V., Volchkova I.R. Oral cavity pathogenic microflora specimens in vitro adhesion to the polyetheretherketone and other materials for the temporary crowns. Clinical Dentistry (Russia). 2018; 2 (86): 74—77 (In Russian). eLIBRARY ID: 35154636
  18. Los’ D.M., Shapovalov V.M., Zotov S.V. The use of polymer materials for medical applications. Health and Ecology Issues. 2020; 2 (64): 5—13 (In Russian). eLIBRARY ID: 43154676
  19. Higashihira S., Simpson S.J., Morita A., Suryavanshi J.R., Arnold C.J., Natoli R.M., Greenfield E.M. Halicin remains active against Staphylococcus aureus in biofilms grown on orthopaedically relevant substrates. Bone Joint Res. 2024; 13 (3): 101—109. PMID: 38432258
  20. Le K.C.M., Tran A.T.Q., Vu M.P., Duong P.V.Q., Nguyen K.T. Preventing static biofilm formation of Staphylococcus aureus on different types of surfaces using microbubbles. Langmuir. 2024; 40 (3): 1698—1706. PMID: 38198688
  21. Brum R.S., Labes L.G., Volpato C.Â.M., Benfatti C.A.M., Pimenta A.L. Strategies to reduce biofilm formation in PEEK materials applied to implant dentistry — A comprehensive review. Antibiotics (Basel). 2020; 9 (9): 609. PMID: 32948018
  22. Almogbel L., Sadid-Zadeh R., Örgev A., Çakmak G., Li R. Flexural strength, surface roughness, and biofilm formation of ceramic-reinforced PEEK: An in vitro comparative study. J Prosthodont. 2023; 2023 Dec 6. (Online ahead of print). PMID: 38057961
  23. Schmutzler A., Stingu C.S., Günther E., Lang R., Fuchs F., Koenig A., Rauch A., Hahnel S. Attachment of respiratory pathogens and candida to denture base materials — A pilot study. J Clin Med. 2023; 12 (19): 6127. PMID: 37834772
  24. da Rocha L.G.D.O., Ribeiro V.S.T., de Andrade A.P., Gonçalves G.A., Kraft L., Cieslinski J., Suss P.H., Tuon F.F. Evaluation of Staphylococcus aureus and Candida albicans biofilms adherence to PEEK and titanium-alloy prosthetic spine devices. Eur J Orthop Surg Traumatol. 2022; 32 (5): 981—989. PMID: 34236512
  25. Sarfraz S., Mäntynen P.H., Laurila M., Rossi S., Leikola J., Kaakinen M., Suojanen J., Reunanen J. Comparison of titanium and PEEK medical plastic implant materials for their bacterial biofilm formation properties. Polymers (Basel). 2022; 14 (18): 3862. PMID: 36146003
  26. Wang Y., Zhang S., Nie B., Qu X., Yue B. Approaches to biofunctionalize polyetheretherketone for antibacterial: A review. Front Bioeng Biotechnol. 2022; 10: 895288. PMID: 35646862
  27. Chen T., Chen Q., Fu H., Wang D., Gao Y., Zhang M., Liu H. Construction and performance evaluation of a sustained release implant material polyetheretherketone with antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2021; 126: 112109. PMID: 34082931
  28. Bai X., Zhang X., Xiao J., Lin X., Lin R., Zhang R., Deng X., Zhang M., Wei W., Lan B., Weng S., Chen M. Endowing polyetheretherketone with anti-infection and immunomodulatory properties through guanidination carbon dots modification to promote osseointegration in diabetes with MRSA infection. Adv Healthc Mater. 2024; 13 (7): e2302873. PMID: 38041688
  29. Kumar S.R., Hu C.C., Vi T.T.T., Chen D.W., Lue S.J. Antimicrobial peptide conjugated on graphene oxide-containing sulfonated polyetheretherketone substrate for effective antibacterial activities against Staphylococcus aureus. Antibiotics (Basel). 2023; 12 (9): 1407. PMID: 37760704
  30. Liu C., Huang Z., Zhu J., Liu X., Zhu B., Zheng D., Yang B., Tao R., Cai C., Chen X., Liu J., Deng Z. Near-ultraviolet irradiation to stimulate unmodified polyether ether ketone to achieve stable and sustainable antibacterial activity. Colloids Surf B Biointerfaces. 2023; 229: 113441. PMID: 37422990

Received

February 27, 2024

Accepted

June 12, 2024

Published on

June 28, 2024