DOI:

10.37988/1811-153X_2023_2_98

Influence of vitamin D on the reconstitutional processes of bone tissue: a review

Authors

  • I.V. Ivanova 1, postgraduate, assistant of the Maxillofacial surgery Department
    ORCID: 0000-0002-8244-4136
  • S.Yu. Ivanov 1, 2, Russian Academy of Science corresponding member, PhD in Medical Sciences, full professor of the Maxillofacial surgery Department; full professor of the Maxillofacial surgery and surgical dentistry Department
    ORCID: 0000-0001-5458-0192
  • A.M. Gusarov 1, PhD in Medical Sciences, associate professor of the Maxillofacial surgery Department
    ORCID: 0000-0002-6583-4685
  • A.A. Muraev 2, PhD in Medical Sciences, professor of the Maxillofacial surgery and surgical dentistry Department
    ORCID: 0000-0003-3982-5512
  • 1 Sechenov University, 119991, Moscow, Russia
  • 2 RUDN University, 117198, Moscow, Russia

Abstract

The article presents a generalized structured review of the results of various research works aimed at the analysis of the effect of vitamin D in the prophylaxis of oral cavity diseases, on the osseointegration of dental implants, on the bone marrow formation, on the periodontal tissue condition, and on the general state of the immune system in patients after surgical interventions. At present, the processes of bone tissue regeneration period reduction is the real problem not only in the field of maxillofacial surgery, but also in surgery in general. Objective — to analyze domestic and foreign literature sources for information on the effect of vitamin D on the regenerative processes of the maxillofacial region. The aim of the research is to study the influence of vitamin D on reconstructive processes of bone tissues and oral cavity condition in patients after surgical interventions when this metabolite is added to the complex therapy. The article contains general medical information about vitamin D: the ways of its entrance and metabolism in the organism, as well as its interaction with other substances and their influence on homeostasis processes; the recommended rates of this metabolite in a human body are presented, its influence on regeneration of bone tissue and healing of postoperative wounds, the results of clinical and laboratory researches in different fields of dentistry, covering the influence of vitamin D on the state of oral cavity in general.
Conclusion.
Due to the lack of widespread use of this drug in practice, it is recommended to reconsider the inclusion of the metabolite in the treatment of patients with diseases of the maxillofacial region on the basis of the presented data. Despite the existing recommended norms established by the WHO and the Endocrinology Association, it is necessary to develop a scheme of vitamin D administration in patients after surgical interventions in order to optimize and shorten the rehabilitation period, based on the evaluation of clinical data of patients.

Key words:

vitamin D, 25(OH)D, bone metabolism, rehabilitation, fracture, dental implantation, osseointegration

For Citation

[1]
Ivanova I.V., Ivanov S.Yu., Gusarov A.M., Muraev A.A. Influence of vitamin D on the reconstitutional processes of bone tissue: a review. Clinical Dentistry (Russia).  2023; 26 (2): 98—104. DOI: 10.37988/1811-153X_2023_2_98

References

  1. Diachkova E.Y., Trifonova D.O., Ibadulaeva M.O., Runova G.E., Fadeyev V.V., Tarasenko S.V. Vitamin D imbalance effects on dentoalveolar system: a review. Osteoporosis and Bone Diseases. 2021; 1: 19—25 (In Russian). eLIBRARY ID: 46452970
  2. Antonova I.N., Grigoriants A.P., Nikitin V.S., Grigoriants A.A. Influence of vitamin D deficiency on progression of inflammation and reparative healing in patients with orofacial region diseases. Medical Council. 2019; 12: 166—170 (In Russian). eLIBRARY ID: 39251555
  3. Maylyan E.A., Rheznichenko N.A., Maylyan D.E. Vitamin D regulation of bone metabolism. Medical Herald of the South of Russia. 2017; 1: 12—20 (In Russian). eLIBRARY ID: 28840425
  4. Maltsev S.V., Mansurova G.Sh. Metabolism of vitamin D and means of its main functions implementation. Practical medicine. 2014; 9 (85): 12—18 (In Russian). eLIBRARY ID: 22597066
  5. Tang X., Pan Y., Zhao Y. Vitamin D inhibits the expression of interleukin-8 in human periodontal ligament cells stimulated with Porphyromonas gingivalis. Arch Oral Biol. 2013; 58 (4): 397—407. PMID: 23083515
  6. Nebel D., Svensson D., et al. 1α,25-dihydroxyvitamin D3 promotes osteogenic activity and downregulates proinflammatory cytokine expression in human periodontal ligament cells. J Periodontal Res. 2015; 50 (5): 666—73. PMID: 25495336
  7. Shkerskaya N.Y., Zykova T.A. New data on the effect of vitamin D on the human body. Siberian medical journal (Irkutsk). 2013; 7: 24—32 (In Russian). eLIBRARY ID: 21082480
  8. Nakashyan V., Tipton D.A., Karydis A., Livada R., Stein S.H. Effect of 1,25(OH)(2)D(3) and 20(OH)D(3) on interleukin-1β-stimulated interleukin-6 and -8 production by human gingival fibroblasts. J Periodontal Res. 2017; 52 (5): 832—841. PMID: 28345770
  9. McMahon L., Schwartz K., et al. Vitamin D-mediated induction of innate immunity in gingival epithelial cells. Infect Immun. 2011; 79 (6): 2250—6. PMID: 21422187
  10. Krawiec M., Dominiak M. The role of vitamin D in the human body with a special emphasis on dental issues: Literature review. Dent Med Probl. 2018; 55 (4): 419—424. PMID: 30648367
  11. Koutkia P., Chen T.C., Holick M.F. Vitamin D intoxication associated with an over-the-counter supplement. N Engl J Med. 2001; 345 (1): 66—7. PMID: 11439958
  12. Luneva S.N., Matveeva E.L., Gasanova A.G., Boichuk S.P., Sazonova N.V. The role of calcium and vitamin D3 in the repair of fractured bones. Doctor.Ru. 2019; 2 (157): 55—60. (In Russ.). eLIBRARY ID: 37303325
  13. Fox K.M., Magaziner J., et al. Loss of bone density and lean body mass after hip fracture. Osteoporos Int. 2000; 11 (1): 31—5. PMID: 10663356
  14. Karlsson M.K., Josefsson P.O., et al. Bone loss following tibial osteotomy: a model for evaluating post-traumatic osteopenia. Osteoporos Int. 2000; 11 (3): 261—4. PMID: 10824243
  15. Zura R., Xiong Z., et al. Epidemiology of Fracture Nonunion in 18 Human Bones. JAMA Surg. 2016; 151 (11): e162775. PMID: 27603155
  16. Nikitinskaya O.A., Toroptsova N.V., Feklistov A.Y., Demin N.V., Abramkin A. Treatment of patients with osteoporosis in modern clinical practice: adherence to therapy. Osteoporosis and Bone Diseases. 2015; 1: 23—27 (In Russian). eLIBRARY ID: 26294657
  17. Lidor C., Dekel S., Meyer M.S., Blaugrund E., Hallel T., Edelstein S. Biochemical and biomechanical properties of avian callus after local administration of dihydroxylated vitamin D metabolites. J Bone Joint Surg Br. 1990; 72 (1): 137—40. PMID: 2298772
  18. Atkin I., Dean D.D., et al. Enhancement of osteoinduction by vitamin D metabolites in rachitic host rats. J Bone Miner Res. 1992; 7 (8): 863—75. PMID: 1442201
  19. Botelho J., Machado V., Proença L., Delgado A.S., Mendes J.J. Vitamin D deficiency and oral health: a comprehensive review. Nutrients. 2020; 12 (5): 1471. PMID: 32438644
  20. Takeda S., Smith S.Y., et al. Long-term treatment with eldecalcitol (1α, 25-dihydroxy-2β- (3-hydroxypropyloxy) vitamin D3) suppresses bone turnover and leads to prevention of bone loss and bone fragility in ovariectomized rats. Calcif Tissue Int. 2015; 96 (1): 45—55. PMID: 25467010
  21. Bianco S.D., Peng J.B., et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res. 2007; 22 (2): 274—85. PMID: 17129178
  22. Hoenderop J.G., van Leeuwen J.P., et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 2003; 112 (12): 1906—14. PMID: 14679186
  23. Dvorak G., Fügl A., et al. Impact of dietary vitamin D on osseointegration in the ovariectomized rat. Clin Oral Implants Res. 2012; 23 (11): 1308—13. PMID: 22151621
  24. Hong H.H., Chou T.A., Yang J.C., Chang C.J. The potential effects of cholecalciferol on bone regeneration in dogs. Clin Oral Implants Res. 2012; 23 (10): 1187—92. PMID: 22092360
  25. Salomó-Coll O., Maté-Sánchez de Val J.E., et al. Topical applications of vitamin D on implant surface for bone-to-implant contact enhance: a pilot study in dogs part II. Clin Oral Implants Res. 2016; 27 (7): 896—903. PMID: 26419393
  26. Xiong Y., Zhang Y., et al. 1α,25-Dihydroxyvitamin D (3) increases implant osseointegration in diabetic mice partly through FoxO1 inactivation in osteoblasts. Biochem Biophys Res Commun. 2017; 494 (3—4): 626—633. PMID: 29080745
  27. Fretwurst T., Grunert S., Woelber J.P., Nelson K., Semper-Hogg W. Vitamin D deficiency in early implant failure: two case reports. Int J Implant Dent. 2016; 2 (1): 24. PMID: 27888492
  28. Schulze-Späte U., Dietrich T., Wu C., Wang K., Hasturk H., Dibart S. Systemic vitamin D supplementation and local bone formation after maxillary sinus augmentation a randomized, double-blind, placebo-controlled clinical investigation. Clin Oral Implants Res. 2016; 27 (6): 701—6. PMID: 26178580
  29. Hong H.H., Yen T.H., Hong A., Chou T.A. Association of vitamin D3 with alveolar bone regeneration in dogs. J Cell Mol Med. 2015; 19 (6): 1208—17. PMID: 25753943
  30. Oteri G., Cicciù M., Peditto M., Catalano A., Loddo S., Pisano M., Lasco A. Does vitamin D3 have an impact on clinical and biochemical parameters related to third molar surgery. J Craniofac Surg. 2016; 27 (2): 469—76. PMID: 26845098
  31. Garcia M.N., Hildebolt C.F., et al. One-year effects of vitamin D and calcium supplementation on chronic periodontitis. J Periodontol. 2011; 82 (1): 25—32. PMID: 20809866
  32. Al-Sayagh N.M., Al-Jumaili K.A., Al-Sadi H.I. Effect of local injection of 1,25- dihydroxycholecalciferol on the velocity of orthodontic tooth movement and bone density. International Journal of Enhanced Research in Science Technology & Engineering. 2014; 3 (4): 146—155.
  33. Foster B.L., Nociti F.H. Jr, Somerman M.J. The rachitic tooth. Endocr Rev. 2014; 35 (1): 1—34. PMID: 23939820
  34. Kim I.J., Lee H.S., Ju H.J., Na J.Y., Oh H.W. A cross-sectional study on the association between vitamin D levels and caries in the permanent dentition of Korean children. BMC Oral Health. 2018; 18 (1): 43. PMID: 29534753
  35. Schroth R.J., Levi J.A., et al. Vitamin D status of children with severe early childhood caries: a case-control study. BMC Pediatr. 2013; 13: 174. PMID: 24160554
  36. Wójcik D., Krzewska A., et al. Dental caries and vitamin D3 in children with growth hormone deficiency: A STROBE compliant study. Medicine (Baltimore). 2018; 97 (8): e9811. PMID: 29465564
  37. Bashutski J.D., Eber R.M., et al. The impact of vitamin D status on periodontal surgery outcomes. J Dent Res. 2011; 90 (8): 1007—12. PMID: 21555774
  38. Reed S.G., Voronca D., et al. Prenatal vitamin D and enamel hypoplasia in human primary maxillary central incisors: a pilot study. Pediatr Dent J. 2017; 27 (1): 21—28. PMID: 30100673

Received

February 10, 2023

Accepted

May 17, 2023

Published on

July 6, 2023