DOI:
10.37988/1811-153X_2023_2_6The anatomo-topographic variations of the root canal orifices of the maxillary molars
Downloads
Abstract
The navigation-optic approach to the determination of the root canal orifices’ location becomes beneficial in the endodontic treatment for eliminating post-treatment errors and complications afterward. This study aims at analyzing the variability of the root canal orifices’ location in the maxillary molars during endodontic treatment.Materials and methods.
435 patients aged 18—75 with complicated caries and tooth retreatment were examined and there was conducted the endodontic treatment of 450 maxillary teeth including 301 first molars and 149 second molars. Treatment and photodocumentation of the treatment stages were performed by a dental microscope with a digital camera. The root canal orifice was defined as a cavity on the pulp chamber floor or in the fissure linking root canal orifices of a single root, that provided an opportunity for the instrumental treatment of at least 1/3 of the canal length. The root canals’ location was approved by the electronic apex location and target X-ray images.
Results.
The analysis of 450 first and second molars of the upper jaw according the photo protocols in patients at the stage of formation of endodontic access showed the configuration variability of the location of the orifices of the root canals at the bottom of the tooth cavity and made it possible to identify four navigation-anatomical types for the location of the orifices of the root canals: 1st type “mesial groove”, 2nd type “linear anatomy”, 3rd type “square anatomy”, 4th type “T-shaped anatomy”.
Conclusion.
The navigation-optical protocol will allow dentists to determine the maximum number of root canal orifices in the upper molars, excluding cases of missed canals and prevent the development of complications in the periapical tissues after obturation of a complex tooth root system.
Key words:
root canal orifices, maxillary molars, missed root canal, navigational optic approachFor Citation
[1]
Postnikov M.A., Kudryashov D.N., Chigarina S.E., Golovachev A.M. The anatomo-topographic variations of the root canal orifices of the maxillary molars. Clinical Dentistry (Russia). 2023; 26 (2): 6—15. DOI: 10.37988/1811-153X_2023_2_6
References
- Duncan H.F., Nagendrababu V., El-Karim I.A., Dummer P.M.H. Outcome measures to assess the effectiveness of endodontic treatment for pulpitis and apical periodontitis for use in the development of European Society of Endodontology (ESE) S3 level clinical practice guidelines: a protocol. Int Endod J. 2021; 54 (5): 646—654. PMID: 33630330
- Setzer F., Chogle S., Torabinedjad M. Endodontic treatment outcomes. In: Torabinejad M., Fouad A.F., Shabahang S. Endodontics. Principles and practice. Elsevier, 2021. Pp. 453—455.
- Abbott P.V. Pulp, root canal, and periradicular conditions. In: Ahmed H.M.A., Dummer P.M.H. Endodontic advances and evidence‐based clinical guidelines. Hoboken, NJ: John Wiley & Sons, 2022. Pp. 85-86, 93. DOI: 10.1002/9781119553939.ch4
- Restrepo-Restrepo F.A., Cañas-Jiménez S.J., Romero-Albarracín R.D., Villa-Machado P.A., Pérez-Cano M.I., Tobón-Arroyave S.I. Prognosis of root canal treatment in teeth with preoperative apical periodontitis: a study with cone-beam computed tomography and digital periapical radiography. Int Endod J. 2019; 52 (11): 1533—1546. PMID: 31211862
- Ng Y.L., Mann V., Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. Int Endod J. 2011; 44 (7): 583—609. PMID: 21366626
- Baruwa A.O., Martins J.N.R., Meirinhos J., Pereira B., Gouveia J., Quaresma S.A., Monroe A., Ginjeira A. The Influence of missed canals on the prevalence of periapical lesions in endodontically treated teeth: a cross-sectional study. J Endod. 2020; 46 (1): 34—39.e1. PMID: 31733814
- Costa F.F.N.P., Pacheco-Yanes J., Siqueira J.F. Jr, Oliveira A.C.S., Gazzaneo I., Amorim C.A., Santos P.H.B., Alves F.R.F. Association between missed canals and apical periodontitis. Int Endod J. 2019; 52 (4): 400—406. PMID: 30284719
- Meirinhos J., Martins J.N.R., Pereira B., Baruwa A., Gouveia J., Quaresma S.A., Monroe A., Ginjeira A. Prevalence of apical periodontitis and its association with previous root canal treatment, root canal filling length and type of coronal restoration a cross-sectional study. Int Endod J. 2020; 53 (4): 573—584. PMID: 31749154
- Alnowailaty Y., Alghamdi F. Prevalence of endodontically treated premolars and molars with untreated canals and their association with apical periodontitis using cone-beam computed tomography. Cureus. 2022; 14 (6): e25619. PMID: 35795507
- Karabucak B., Bunes A., Chehoud C., Kohli M.R., Setzer F. Prevalence of apical periodontitis in endodontically treated premolars and molars with untreated canal: a cone-beam computed tomography study. J Endod. 2016; 42 (4): 538—41. PMID: 26873567
- Martins J.N.R., Marques D., Silva E.J.N.L., Caramês J., Mata A., Versiani M.A. Second mesiobuccal root canal in maxillary molars-A systematic review and meta-analysis of prevalence studies using cone beam computed tomography. Arch Oral Biol. 2020; 113: 104589. PMID: 31735252
- Razumova S.N., Brago A.S., Barakat Kh.B., Khaskhanova L.M., Huaizi A., Nadtochiy A.G. Anatomy of first upper molar according to cone beam computed tomography among residents of Moscow Region. Medical alphabet. 2018; 2 (339): 27—28 (In Russian). eLIBRARY ID: 35040301
- Cantatore G., Berutti E., Castellucci A. Missed anatomy: frequency and clinical impact. In: Endodontic Topics, vol. 15, issue 1. Wiley & Sons, 2009. Pp. 3—31. DOI: 10.1111/j.1601-1546.2009.00240.x
- Alyamovsky V.V., Levenets O.A., Levenets A.A., Narykova S.A. Morphological basis and methodical approaches to treatment of root canals maxillary molars. Siberian Medical Review. 2013; 6 (84): 3—8 (In Russian). eLIBRARY ID: 21082580
- Alyamovsky V.V., Levenets O.A., Levenets A.A. Multiple anatomical variations of structure molars maxilla. Endodontics Today. 2014; 4: 22—25 (In Russian). eLIBRARY ID: 22842164
- Versiani M., Gleghorn B., Christie W. Root canal anatomy. In: Torabinejad M., Fouad A.F., Shabahang S. Endodontics. Principles and practice. Elsevier, 2021. Pp. 225—230.
- Gopikrishna V. Grosman’s enododontic practice, 14th ed. New Delhi: Wolters Kluwer, 2021. Pp. 242—244.
- Batukov N.M., Konstantinov A.A., Chibisova M.A. Possibilities of visualizing the tooth structure by means of cone-beam computer tomography and microscope in endodontic treatment. The Dental Institute. 2016; 3 (72): 38—41 (In Russian). eLIBRARY ID: 26602927
- Patel S., Brown J., Pimentel T., Kelly R.D., Abella F., Durack C. Cone beam computed tomography in Endodontics a review of the literature. Int Endod J. 2019; 52 (8): 1138—1152. PMID: 30868610
- Martins J.N.R., Kishen A., Marques D., Nogueira Leal Silva E.J., Caramês J., Mata A., Versiani M.A. Preferred reporting items for epidemiologic cross-sectional studies on root and root canal anatomy using cone-beam computed tomographic technology: a systematized assessment. J Endod. 2020; 46 (7): 915—935. PMID: 32387077
- Abella F., Kanagasingam S. Assessment of root canal anatomy. In: Patel S., Harvey S., Shemesh H., Durack C. Cone beam computed tomography in endodontics. Quintessence, 2016. Pp. 134—135.
- Han X., Yang H., Li G., Yang L., Tian C., Wang Y. A study of the distobuccal root canal orifice of the maxillary second molars in Chinese individuals evaluated by cone-beam computed tomography. J Appl Oral Sci. 2012; 20 (5): 563—7. PMID: 23138744
- Batyukov N.M., Berkhman M.V. Estimation of Endodontic Treatment Efficacy Using a Microscope. The Dental Institute. 2013; 4 (61): 82—83 (In Russian). eLIBRARY ID: 22988429
- Zhukova E.S., Chuikova Y.A. Quality assessment of root canal obturation using a dental microscope. Scientist (Russia). 2021; 2 (16): 23 (In Russian). eLIBRARY ID: 47378335
- Gopikrishna V. Grosman’s enododontic practice, 14th ed. New Delhi: Wolters Kluwer, 2021. Pp. 158—162.
- Gazhva S.I., Kucher V.A., Kulkova D.A. The use of optical microscopy to fix errors and adverse outcome of endodontic treatment of complicated caries. Fundamental research. 2013; 5-1: 58—62 (In Russian). eLIBRARY ID: 18967374
- Pawar A.M., Singh S. New classification for pulp chamber floor anatomy of human molars. J Conserv Dent. 2020; 23 (5): 430—435. PMID: 33911348
- Krasner P., Rankow H.J. Anatomy of the pulp-chamber floor. J Endod. 2004; 30 (1): 5—16. PMID: 14760900
- Griroriev S.S., Sorokoumova D.V., Chernyshova N.D., Chagay A.A., Yepishova A.A. Root canal morphology. Endodontic access. Ekaterinburg: Tirazh, 2019. 58 p. (In Russian). DOI: 10.18481/textbook_5ddce2a6a72d65.25995047
- Nascimento E.H.L., Gaêta-Araujo H., Andrade M.F.S., Freitas D.Q. Prevalence of technical errors and periapical lesions in a sample of endodontically treated teeth: a CBCT analysis. Clin Oral Investig. 2018; 22 (7): 2495—2503. PMID: 29354883
- Gopikrishna V. Grosman’s enododontic practice, 14th ed. New Delhi: Wolters Kluwer, 2021. P. 230.
Downloads
Received
March 7, 2023
Accepted
June 10, 2023
Published on
July 6, 2023