DOI:

10.37988/1811-153X_2023_1_147

Stress-deformed state of a non-removable prosthesis on implants under mustering load depending on the angle of abutment wall tilt

Authors

  • S.I. Abakarov 1, Russian Academy of Science corresponding member, PhD in Medical Sciences, full professor of the Prosthodontics and general dentistry Department
    ORCID: 0000-0003-2369-3527
  • D.V. Sorokin 1, PhD in Medical Sciences, professor of the Prosthodontics and general dentistry Department
    ORCID: 0000-0003-2043-2874
  • V.Yu. Lapushko 1, postgraduate at the Prosthodontics and general dentistry Department
    ORCID: 0000-0001-6539-3405
  • S.S. Abakarova 1, PhD in Medical sciences, associate professor of the Prosthodontics and general dentistry Department
    ORCID: 0000-0001-9483-6092
  • 1 Russian Medical Academy of Continuous Professional Education, 125993, Moscow, Russia

Abstract

Despite the widespread use of implant-supported fixed prostheses, a number of issues related to their manufacture remain debatable. Many authors raise the question of the necessary degree of inclination of the abutment walls to improve the passive fit and stability of the prosthesis, which determined the relevance and purpose of this publication. >. A study of the stress-strain state of the components of a fixed prosthesis during cementation on an abutment (ceramic veneer, frame, cement, abutment) was carried out using the finite element method (FEM), depending on the design of the fixed prosthesis, the height and angle of inclination of the abutment walls. A total of 99 models were studied and analyzed. >. The analysis of the obtained results showed that with three differently directed chewing loads on fixed prostheses, with an increase in the angle of inclination of the abutment walls, the level of stress-strain state values in the ceramic veneer statistically significantly (p≤0.05) decreases over the entire surface. Also, with an increase in the angle of inclination of the walls of the abutments, the level of maximum tensile stresses over the entire volume of the framework decreases statistically significantly (p≤0.05). When analyzing the results of studying stresses in the cement layer with an increase in the angle of inclination of the abutment walls, the level of tangential and tensile stresses in the cement layer increases statistically significantly (p≤0.05) with a masticatory load at an angle of 30° — 200 N and a transverse masticatory load of 100 N at an increase in the angle of inclination of the walls of the abutment as a result of the excessive conical surface of the abutment, these stresses can lead to decementation of the fixed prosthesis. The study of the stress-strain state of abutments under three differently directed masticatory loads showed a sharp surge of stresses in their upper part at an inclination angle of 10° and a diameter of 4.5 mm in fixed metal-ceramic prostheses on a single support, on two supports, on three supports, and statistically significant (p≤0.05) a 3.7-fold decrease in stress values with a decrease in the angle of inclination to 8°. >. It has been established that the height and angle of inclination of the abutment walls affect the uneven distribution of stresses in the ceramic veneer, framework, cement layer and abutment.

Key words:

chewing load, implant, abutment, fixed prostheses, ceramic-metal, wall inclination angle, convergence, stress-strain state

For Citation

[1]
Abakarov S.I., Sorokin D.V., Lapushko V.Yu., Abakarova S.S. Stress-deformed state of a non-removable prosthesis on implants under mustering load depending on the angle of abutment wall tilt. Clinical Dentistry (Russia).  2023; 26 (1): 147—157. DOI: 10.37988/1811-153X_2023_1_147

References

  1. Mosharraf R., Abbasi M., Givehchian P. The effect of abutment angulation and crown material compositions on stress distribution in 3-unit fixed implant-supported prostheses: A finite element analysis. Int J Dent. 2022; 2022: 4451810. PMID: 36065400
  2. Strauss F.J., Siegenthaler M., Hämmerle C.H.F., Sailer I., Jung R.E., Thoma D.S. Restorative angle of zirconia restorations cemented on non-original titanium bases influences the initial marginal bone loss: 5-year results of a prospective cohort study. Clin Oral Implants Res. 2022; 33 (7): 745—756. PMID: 35570366
  3. de Aguiar Vilela Júnior R., Aranha L.C., Elias C.N., Martinez E.F. In vitro analysis of prosthetic abutment and angulable frictional implant interface adaptation: Mechanical and microbiological study. J Biomech. 2021; 128: 110733. PMID: 34530293
  4. López-Jarana P., Díaz-Castro C.M., Falcão A., Ríos-Carrasco B., Fernandez-Palacín A., Ríos-Santos J.V., Herrero-Climent M. Is it possible to monitor implant stability on a prosthetic abutment? An in vitro resonance frequency analysis. Int J Environ Res Public Health. 2020; 17 (11): 4073. PMID: 32521612
  5. Lee M.Y., Heo S.J., Park E.J., Park J.M. Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses. J Adv Prosthodont. 2013; 5 (3): 312—8. PMID: 24049573
  6. Abakarov S.I., Sorokin D.V., Lapushko V.Y., Nikiforova K.I. Analysis of the fit quality of the metal frames on implants depending on the abutment taper. Stomatology. 2021; 6: 56—60 (In Russ.). eLIBRARY ID: 47402457
  7. Rathod A., Jalaluddin M., Shrinivas, Devadiga T.J., Jha S., Alzahrani K.M. Geometry of implant abutment surface improving cement effectiveness: An in vitro study. J Pharm Bioallied Sci. 2021; 13 (Suppl 2): S1093-S1097. PMID: 35017936
  8. Mishra K., Singh P., Noorani M.K., Adarsh K., Kalburgi M.N., Mallik M. Evaluation of change in implant abutment after teeth surface modifications. Bioinformation. 2021; 17 (1): 157—161. PMID: 34393431
  9. Rosas J., Mayta-Tovalino F., Malpartida-Carrillo V., Degregori A.M., Mendoza R., Guerrero M.E. Effect of abutment geometry and luting agents on the vertical marginal discrepancy of cast copings on implant abutments: An in vitro study. Int J Dent. 2021; 2021: 9950972. PMID: 34239569
  10. Safari S., Hosseini Ghavam F., Amini P., Yaghmaei K. Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. J Adv Prosthodont. 2018; 10 (1): 1—7. PMID: 29503708
  11. Chaar M.S., Att W., Strub J.R. Prosthetic outcome of cement-retained implant-supported fixed dental restorations: a systematic review. J Oral Rehabil. 2011; 38 (9): 697—711. PMID: 21395638
  12. Ali A.O., Kelly J.R., Zandparsa R. The influence of different convergence angles and resin cements on the retention of zirconia copings. J Prosthodont. 2012; 21 (8): 614—21. PMID: 22823334
  13. Rödiger M., Rinke S., Ehret-Kleinau F., Pohlmeyer F., Lange K., Bürgers R., Gersdorff N. Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation. J Adv Prosthodont. 2014; 6 (3): 233—40. PMID: 25006388
  14. Yoon S.S., Cheong C., Preisser J. Jr, Jun S., Chang B.M., Wright R.F. Measurement of total occlusal convergence of 3 different tooth preparations in 4 different planes by dental students. J Prosthet Dent. 2014; 112 (2): 285—92. PMID: 24726595
  15. Rodriguez L.C., Saba J.N., Meyer C.A., Chung K.H., Wadhwani C., Rodrigues D.C. A finite element analysis of novel vented dental abutment geometries for cement-retained crown restorations. Clin Exp Dent Res. 2016; 2 (2): 136—145. PMID: 29744160
  16. Rödiger M., Kloß J., Gersdorff N., Bürgers R., Rinke S. Removal forces of adhesively and self-adhesively luted implant-supported zirconia copings depend on abutment geometry. J Mech Behav Biomed Mater. 2018; 87: 119—123. PMID: 30056309
  17. Beuer F., Edelhoff D., Gernet W., Naumann M. Effect of preparation angles on the precision of zirconia crown copings fabricated by CAD/CAM system. Dent Mater J. 2008; 27 (6): 814—20. PMID: 19241690
  18. Tiu J., Al-Amleh B., Waddell J.N., Duncan W.J. Clinical tooth preparations and associated measuring methods: a systematic review. J Prosthet Dent. 2015; 113 (3): 175—84. PMID: 25449611
  19. Choi K.H., Son K., Lee D.H., Lee K.B. Influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with a lingual slot. J Adv Prosthodont. 2018; 10 (5): 381—387. PMID: 30370030
  20. Zhao L., Weigl P., Wu Y., Xu Y. In vitro study of bond strength between abutments with different degrees of convergence and crowns by pre-bonding method. Int J Oral Maxillofac Implants. 2019; 34 (1): 25—30. PMID: 30695084
  21. Schriwer C., Gjerdet N.R., Arola D., Øilo M. The effect of preparation taper on the resistance to fracture of monolithic zirconia crowns. Dent Mater. 2021; 37 (8): e427-e434. PMID: 33910755
  22. Zhang Y., Yu P., Yu H. Stress distribution and microgap formation in angulated zirconia abutments with a titanium base in narrow diameter implants: A 3D finite element analysis. Int J Numer Method Biomed Eng. 2022; 38 (7): e3610. PMID: 35490303
  23. Huang Y.C., Ding S.J., Yuan C., Yan M. Biomechanical analysis of rigid and non-rigid connection with implant abutment designs for tooth-implant supported prosthesis: A finite element analysis. J Dent Sci. 2022; 17 (1): 490—499. PMID: 35028075
  24. Cicciu M., Bramanti E., Matacena G., Guglielmino E., Risitano G. FEM evaluation of cemented-retained versus screw-retained dental implant single-tooth crown prosthesis. Int J Clin Exp Med. 2014; 7 (4): 817—25. PMID: 24955150
  25. Sim B.K., Kim B., Kim M.J., Jeong G.H., Ju K.W., Shin Y.J., Kim M.Y., Lee J.H. Hollow abutment screw design for easy retrieval in case of screw fracture in dental implant system. J Healthc Eng. 2017; 2017: 4842072. PMID: 29065610
  26. Olesova V.N., Bronstein D.A., Uzunyan N.A., Zaslavsky R.S., Lerner A.Ya., Shmatov K.V. Biomechanics of implant retained fixed prosthesis in patient with edentulous upper jaw. Stomatology. 2018; 6: 53—56 (In Russ.). eLIBRARY ID: 36647244
  27. Singh N.K., Chalapathy S.B., Thota R.P., Chakravarthula K., Tirnati R., Yenugupalli K. Evaluation of stress distribution among two different pre-angled abutments of implants in two different densities of bone at different levels along the implant in vitro study. J Contemp Dent Pract. 2018; 19 (11): 1370—1375. PMID: 30602643
  28. Macedo J.P., Pereira J., Faria J., Souza J.C.M., Alves J.L., López-López J., Henriques B. Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest. Comput Methods Biomech Biomed Engin. 2018; 21 (12): 655—662. PMID: 30693810
  29. Li Z., Gao S., Chen H., Ma R., Wu T., Yu H. Micromotion of implant-abutment interfaces (IAI) after loading: correlation of finite element analysis with in vitro performances. Med Biol Eng Comput. 2019; 57 (5): 1133—1144. PMID: 30656596
  30. Cervino G., Romeo U., Lauritano F., Bramanti E., Fiorillo L., D'Amico C., Milone D., Laino L., Campolongo F., Rapisarda S., Cicciù M. FEM and von Mises analysis of OSSTEM® dental implant structural components: Evaluation of different direction dynamic loads. Open Dent J. 2018; 12: 219—229. PMID: 29682092
  31. Poyurovskaya I.Ya. Dental materials science: schoolbook. Moscow: GEOTAR-Media, 2007. 192 p. (In Russ.). eLIBRARY ID: 19540163

Received

November 21, 2022

Accepted

February 14, 2023

Published on

March 22, 2023