DOI:

10.37988/1811-153X_2022_4_106

Osteoplastic properties of a new material based on hydroxyapatite

Authors

  • G.A. Demyashkin 1, 2, PhD in Medical Sciences, head of the Histology and Immunohistochemistry Lab; head of the Department of Pathomorphology
    ORCID: 0000-0001-8447-2600
  • S.Yu. Ivanov 1, Russian Academy of Science corresponding member, PhD in Medical Sciences, full professor of the Maxillofacial surgery Department
    ORCID: 0000-0001-5458-0192
  • A.A. Chueva 3, postgraduate at the Surgical Dentistry Department
    ORCID: 0000-0001-6625-8432
  • V.V. Chuev 3, PhD in Medical Sciences, associate professor of the Therapeutic dentistry Department
    ORCID: 0000-0001-6625-8432
  • F.N. Bondarenko 2, postgraduate at the Department of Pathomorphology
    ORCID: 0000-0001-8952-4174
  • S.A. Suvorova 1, 5th year student
    ORCID: 0000-0002-7781-2723
  • 1 Sechenov University, 119991, Moscow, Russia
  • 2 Tsyb Medical Radiological Research Centre, 249031, Obninsk, Russia
  • 3 Belgorod State University, 308015, Belgorod, Russia

Abstract

Nowadays tissue engineering is actively developing in the world, which is aimed at the development and study of materials capable of restoring, maintaining or improving the natural tissues of the body. The greatest success in this area has been achieved in the bone tissue engineering, which is widely used in modern dentistry and maxillofacial surgery. In this study, the osteogenic, osteoinductive, osteoconductive and immunogenic properties of the new material Bioplast-Dent (VladMiVa, Russia) based on hydroxyapatite of biological origin were analyzed. >. In the Wistar rats (n=20), two bone defects 7 mm in diameter were created in the parietal bone, one of which was filled with paste, and the other was left open for control comparison. The results were evaluated using micro-computed tomography and histological examination of skull specimens. >. One month after implantation, the volume of tissue in the area of the experimental defect was 16.49±3.31 mm3 against 3.64±1.17 mm3 in the control defect, and on the 2nd month it was 18.24±4.14 mm3 against 3.82±0.83 mm3, respectively. Histological examination revealed signs of osteogenesis along the periphery of the implant material, no inflammation was detected. >. Bioplast-Dent is safe and effective for use in the reconstruction of bone defects: because of high biocompatibility and osteogenic properties.

Key words:

hydroxyapatite, implantation, bone defect, paste

For Citation

[1]
Demyashkin G.A., Ivanov S.Yu., Chueva A.A., Chuev V.V., Bondarenko F.N., Suvorova S.A. Osteoplastic properties of a new material based on hydroxyapatite. Clinical Dentistry (Russia).  2022; 25 (4): 106—113. DOI: 10.37988/1811-153X_2022_4_106

References

  1. Manzini B.M., Machado L.M.R., Noritomi P.Y., D.A. Silva J.V.L. Advances in bone tissue engineering: A fundamental review. J Biosci. 2021; 46: 17. PMID: 33737501
  2. Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40 (5): 363—408. PMID: 23339648
  3. Koons G.L., Diba M., Mikos A.G. Materials design for bone-tissue engineering. Nat Rev Mater. 2020; 5: 584—603. DOI: 10.1038/s41578-020-0204-2
  4. Fleisher G.M., Posokhova V.F., Lykova I.V. The use of osteoplastic material “Bioplast-Dent” in dentistry or maxillofacial surgery. Dental Implantology and Surgery. 2016; 1 (22): 44—46 (In Russ.). eLIBRARY ID: 29299800
  5. Hu C., Ashok D., Nisbet D.R., Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials. 2019; 219: 119366. PMID: 31374482
  6. Grayson W.L., Bunnell B.A., Martin E., Frazier T., Hung B.P., Gimble J.M. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015; 11 (3): 140—50. PMID: 25560703
  7. Nauth A., Schemitsch E., Norris B., Nollin Z., Watson J.T. Critical-size bone defects: Is there a consensus for diagnosis and treatment? J Orthop Trauma. 2018; 32 Suppl 1: S7-S11. PMID: 29461395
  8. Tang G., Liu Z., Liu Y., Yu J., Wang X., Tan Z., Ye X. Recent trends in the development of bone regenerative biomaterials. Front Cell Dev Biol. 2021; 9: 665813. PMID: 34026758
  9. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009; 19 (3): 219—33. PMID: 19883366
  10. Shi H., Zhou Z., Li W., Fan Y., Li Z., Wei J. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals. 2021; 11 (2): 149. DOI: 10.3390/cryst11020149.
  11. Saulacic N., Fujioka-Kobayashi M., Kimura Y., Bracher A.I., Zihlmann C., Lang N.P. The effect of synthetic bone graft substitutes on bone formation in rabbit calvarial defects. J Mater Sci Mater Med. 2021; 32 (1): 14. PMID: 33475862
  12. Zhao R., Yang R., Cooper P.R., Khurshid Z., Shavandi A., Ratnayake J. Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules. 2021; 26 (10): 3007. PMID: 34070157
  13. Battafarano G., Rossi M., De Martino V., Marampon F., Borro L., Secinaro A., Del Fattore A. Strategies for bone regeneration: From graft to tissue engineering. Int J Mol Sci. 2021; 22 (3): 1128. PMID: 33498786
  14. Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.C., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S., Miller J.V., Pieper S., Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012; 30 (9): 1323—41. PMID: 22770690
  15. Cooper G.M., Mooney M.P., Gosain A.K., Campbell P.G., Losee J.E., Huard J. Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg. 2010; 125 (6): 1685—1692. PMID: 20517092
  16. Lee Y.K., Wadhwa P., Cai H., Jung S.U., Zhao B.C., Rim J.S., Kim D.H., Jang H.S., Lee E.S. Micro-CT and histomorphometric study of bone regeneration effect with autogenous tooth biomaterial enriched with platelet-rich fibrin in an animal model. Scanning. 2021; 2021: 6656791. PMID: 34055131
  17. Schemitsch E.H. Size matters: Defining critical in bone defect size! J Orthop Trauma. 2017; 31 Suppl 5: S20-S22. PMID: 28938386
  18. Swain M.V., Xue J. State of the art of Micro-CT applications in dental research. Int J Oral Sci. 2009; 1 (4): 177—88. PMID: 20690421
  19. Tuan H.S., Hutmacher D.W. Application of micro CT and computation modeling in bone tissue engineering. Computer-Aided Design. 2005; 37 (11): 1151—1161. DOI: 10.1016/j.cad.2005.02.006.
  20. Notodihardjo F.Z., Kakudo N., Kushida S., Suzuki K., Kusumoto K. Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg. 2012; 40 (3): 287—91. PMID: 21737289
  21. Quarto R., Giannoni P. Bone tissue engineering: Past-present-future. Methods Mol Biol. 2016; 1416: 21—33. PMID: 27236664
  22. De Carvalho B., Rompen E., Lecloux G., Schupbach P., Dory E., Art J.F., Lambert F. Effect of sintering on in vivo biological performance of chemically deproteinized bovine hydroxyapatite. Materials (Basel). 2019; 12 (23): E3946. PMID: 31795201
  23. Bal Z., Kaito T., Korkusuz F., Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Materials. 2020; 3 (4): 521—544. DOI: 10.1007/s42247-019-00063-3
  24. Kozuma W., Kon K., Kawakami S., Bobothike A., Iijima H., Shiota M., Kasugai S. Osteoconductive potential of a hydroxyapatite fiber material with magnesium: In vitro and in vivo studies. Dent Mater J. 2019; 38 (5): 771—778. PMID: 31257306
  25. Salimi M.N, Anuar A. Characterizations of biocompatible and bioactive hydroxyapatite particles. Procedia Engineering. 2013; 53: 192—196. DOI: 10.1016/j.proeng.2013.02.025
  26. Woodard J.R., Hilldore A.J., Lan S.K., Park C.J., Morgan A.W., Eurell J.A., Clark S.G., Wheeler M.B., Jamison R.D., Wagoner Johnson A.J. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007; 28 (1): 45—54. PMID: 16963118
  27. Jansen J.A., Dhert W.J., van der Waerden J.P., von Recum A.F. Semi-quantitative and qualitative histologic analysis method for the evaluation of implant biocompatibility. J Invest Surg. 1994; 7 (2): 123—34. PMID: 8049175
  28. Pröhl A., Batinic M., Alkildani S., Hahn M., Radenkovic M., Najman S., Jung O., Barbeck M. In Vivo Analysis of the Biocompatibility and Bone Healing Capacity of a Novel Bone Grafting Material Combined with Hyaluronic Acid. Int J Mol Sci. 2021; 22 (9): 4818. PMID: 34062885
  29. Flaig I., Radenković M., Najman S., Pröhl A., Jung O., Barbeck M. In Vivo Analysis of the Biocompatibility and Immune Response of Jellyfish Collagen Scaffolds and its Suitability for Bone Regeneration. Int J Mol Sci. 2020; 21 (12): E4518. PMID: 32630456
  30. Kharitonov D.Y.U., Azarova Ye.A., Azarova O.A. Comparative characteristics of morphological structure osteoplastic materials of various origin andbone tissue of man. Scientific and Medical Bulletin of the Central Chernozem Region. 2017; 69: 3—6 (In Russ.). eLIBRARY ID: 29909643
  31. Romanenko A.A., Chuev V.V., Buzov A.A., Posokhova V.F., Chuev V.P. Clinical evaluation of osteoplastic material Bioplast-Dent (a review). Clinical Dentistry (Russia). 2020; 2 (94): 46—54 (In Russ.). eLIBRARY ID: 43125604
  32. Korotkih N., Bugrimov D. Justification of osteoplastic preparation “Bioplast-dent” and “Klipdent” in the experiment. Scientific and Medical Bulletin of the Central Chernozem Region. 2013; 52: 200—202 (In Russ.). eLIBRARY ID: 25730135
  33. Gosain A.K., Santoro T.D., Song L.S., Capel C.C., Sudhakar P.V., Matloub H.S. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Plast Reconstr Surg. 2003; 112 (2): 515—27. PMID: 12900610
  34. Wang J., Glimcher M.J. Characterization of matrix-induced osteogenesis in rat calvarial bone defects: II. Origins of bone-forming cells. Calcif Tissue Int. 1999; 65 (6): 486—93. PMID: 10594169
  35. Alper G., Bernick S., Yazdi M., Nimni M.E. Osteogenesis in bone defects in rats: the effects of hydroxyapatite and demineralized bone matrix. Am J Med Sci. 1989; 298 (6): 371—6. PMID: 2556916
  36. Lee D.J., Kwon J., Kim Y.I., Wang X., Wu T.J., Lee Y.T., Kim S., Miguez P., Ko C.C. Effect of pore size in bone regeneration using polydopamine-laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mould printing technology. Orthod Craniofac Res. 2019; 22 Suppl 1: 127—133. PMID: 31074145
  37. Zhou D., Qi C., Chen Y.X., Zhu Y.J., Sun T.W., Chen F., Zhang C.Q. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int J Nanomedicine. 2017; 12: 2673—2687. PMID: 28435251
  38. Haritonov D.Yu., Domashevskaya E.P., Azarova E.A., Goloschapov D.L. The comparison of morphological and structural characteristics of the human mandibular bone tissue and the osteoplastic material “Klipdent”, “Bioplast-dent”. Applied and IT Research in Medicine. 2014; 2: 63—67 (In Russ.). eLIBRARY ID: 22927213

Received

October 16, 2022

Accepted

November 8, 2022

Published on

December 21, 2022