DOI:
10.37988/1811-153X_2022_4_106Osteoplastic properties of a new material based on hydroxyapatite
Downloads
Abstract
Nowadays tissue engineering is actively developing in the world, which is aimed at the development and study of materials capable of restoring, maintaining or improving the natural tissues of the body. The greatest success in this area has been achieved in the bone tissue engineering, which is widely used in modern dentistry and maxillofacial surgery. In this study, the osteogenic, osteoinductive, osteoconductive and immunogenic properties of the new material Bioplast-Dent (VladMiVa, Russia) based on hydroxyapatite of biological origin were analyzed. >. In the Wistar rats (n=20), two bone defects 7 mm in diameter were created in the parietal bone, one of which was filled with paste, and the other was left open for control comparison. The results were evaluated using micro-computed tomography and histological examination of skull specimens. >. One month after implantation, the volume of tissue in the area of the experimental defect was 16.49±3.31 mm3 against 3.64±1.17 mm3 in the control defect, and on the 2nd month it was 18.24±4.14 mm3 against 3.82±0.83 mm3, respectively. Histological examination revealed signs of osteogenesis along the periphery of the implant material, no inflammation was detected. >. Bioplast-Dent is safe and effective for use in the reconstruction of bone defects: because of high biocompatibility and osteogenic properties.Key words:
hydroxyapatite, implantation, bone defect, pasteFor Citation
[1]
Demyashkin G.A., Ivanov S.Yu., Chueva A.A., Chuev V.V., Bondarenko F.N., Suvorova S.A. Osteoplastic properties of a new material based on hydroxyapatite. Clinical Dentistry (Russia). 2022; 25 (4): 106—113. DOI: 10.37988/1811-153X_2022_4_106
References
- Manzini B.M., Machado L.M.R., Noritomi P.Y., D.A. Silva J.V.L. Advances in bone tissue engineering: A fundamental review. J Biosci. 2021; 46: 17. PMID: 33737501
- Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40 (5): 363—408. PMID: 23339648
- Koons G.L., Diba M., Mikos A.G. Materials design for bone-tissue engineering. Nat Rev Mater. 2020; 5: 584—603. DOI: 10.1038/s41578-020-0204-2
- Fleisher G.M., Posokhova V.F., Lykova I.V. The use of osteoplastic material “Bioplast-Dent” in dentistry or maxillofacial surgery. Dental Implantology and Surgery. 2016; 1 (22): 44—46 (In Russ.). eLIBRARY ID: 29299800
- Hu C., Ashok D., Nisbet D.R., Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials. 2019; 219: 119366. PMID: 31374482
- Grayson W.L., Bunnell B.A., Martin E., Frazier T., Hung B.P., Gimble J.M. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015; 11 (3): 140—50. PMID: 25560703
- Nauth A., Schemitsch E., Norris B., Nollin Z., Watson J.T. Critical-size bone defects: Is there a consensus for diagnosis and treatment? J Orthop Trauma. 2018; 32 Suppl 1: S7-S11. PMID: 29461395
- Tang G., Liu Z., Liu Y., Yu J., Wang X., Tan Z., Ye X. Recent trends in the development of bone regenerative biomaterials. Front Cell Dev Biol. 2021; 9: 665813. PMID: 34026758
- Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009; 19 (3): 219—33. PMID: 19883366
- Shi H., Zhou Z., Li W., Fan Y., Li Z., Wei J. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals. 2021; 11 (2): 149. DOI: 10.3390/cryst11020149.
- Saulacic N., Fujioka-Kobayashi M., Kimura Y., Bracher A.I., Zihlmann C., Lang N.P. The effect of synthetic bone graft substitutes on bone formation in rabbit calvarial defects. J Mater Sci Mater Med. 2021; 32 (1): 14. PMID: 33475862
- Zhao R., Yang R., Cooper P.R., Khurshid Z., Shavandi A., Ratnayake J. Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules. 2021; 26 (10): 3007. PMID: 34070157
- Battafarano G., Rossi M., De Martino V., Marampon F., Borro L., Secinaro A., Del Fattore A. Strategies for bone regeneration: From graft to tissue engineering. Int J Mol Sci. 2021; 22 (3): 1128. PMID: 33498786
- Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.C., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S., Miller J.V., Pieper S., Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012; 30 (9): 1323—41. PMID: 22770690
- Cooper G.M., Mooney M.P., Gosain A.K., Campbell P.G., Losee J.E., Huard J. Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg. 2010; 125 (6): 1685—1692. PMID: 20517092
- Lee Y.K., Wadhwa P., Cai H., Jung S.U., Zhao B.C., Rim J.S., Kim D.H., Jang H.S., Lee E.S. Micro-CT and histomorphometric study of bone regeneration effect with autogenous tooth biomaterial enriched with platelet-rich fibrin in an animal model. Scanning. 2021; 2021: 6656791. PMID: 34055131
- Schemitsch E.H. Size matters: Defining critical in bone defect size! J Orthop Trauma. 2017; 31 Suppl 5: S20-S22. PMID: 28938386
- Swain M.V., Xue J. State of the art of Micro-CT applications in dental research. Int J Oral Sci. 2009; 1 (4): 177—88. PMID: 20690421
- Tuan H.S., Hutmacher D.W. Application of micro CT and computation modeling in bone tissue engineering. Computer-Aided Design. 2005; 37 (11): 1151—1161. DOI: 10.1016/j.cad.2005.02.006.
- Notodihardjo F.Z., Kakudo N., Kushida S., Suzuki K., Kusumoto K. Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg. 2012; 40 (3): 287—91. PMID: 21737289
- Quarto R., Giannoni P. Bone tissue engineering: Past-present-future. Methods Mol Biol. 2016; 1416: 21—33. PMID: 27236664
- De Carvalho B., Rompen E., Lecloux G., Schupbach P., Dory E., Art J.F., Lambert F. Effect of sintering on in vivo biological performance of chemically deproteinized bovine hydroxyapatite. Materials (Basel). 2019; 12 (23): E3946. PMID: 31795201
- Bal Z., Kaito T., Korkusuz F., Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Materials. 2020; 3 (4): 521—544. DOI: 10.1007/s42247-019-00063-3
- Kozuma W., Kon K., Kawakami S., Bobothike A., Iijima H., Shiota M., Kasugai S. Osteoconductive potential of a hydroxyapatite fiber material with magnesium: In vitro and in vivo studies. Dent Mater J. 2019; 38 (5): 771—778. PMID: 31257306
- Salimi M.N, Anuar A. Characterizations of biocompatible and bioactive hydroxyapatite particles. Procedia Engineering. 2013; 53: 192—196. DOI: 10.1016/j.proeng.2013.02.025
- Woodard J.R., Hilldore A.J., Lan S.K., Park C.J., Morgan A.W., Eurell J.A., Clark S.G., Wheeler M.B., Jamison R.D., Wagoner Johnson A.J. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007; 28 (1): 45—54. PMID: 16963118
- Jansen J.A., Dhert W.J., van der Waerden J.P., von Recum A.F. Semi-quantitative and qualitative histologic analysis method for the evaluation of implant biocompatibility. J Invest Surg. 1994; 7 (2): 123—34. PMID: 8049175
- Pröhl A., Batinic M., Alkildani S., Hahn M., Radenkovic M., Najman S., Jung O., Barbeck M. In Vivo Analysis of the Biocompatibility and Bone Healing Capacity of a Novel Bone Grafting Material Combined with Hyaluronic Acid. Int J Mol Sci. 2021; 22 (9): 4818. PMID: 34062885
- Flaig I., Radenković M., Najman S., Pröhl A., Jung O., Barbeck M. In Vivo Analysis of the Biocompatibility and Immune Response of Jellyfish Collagen Scaffolds and its Suitability for Bone Regeneration. Int J Mol Sci. 2020; 21 (12): E4518. PMID: 32630456
- Kharitonov D.Y.U., Azarova Ye.A., Azarova O.A. Comparative characteristics of morphological structure osteoplastic materials of various origin andbone tissue of man. Scientific and Medical Bulletin of the Central Chernozem Region. 2017; 69: 3—6 (In Russ.). eLIBRARY ID: 29909643
- Romanenko A.A., Chuev V.V., Buzov A.A., Posokhova V.F., Chuev V.P. Clinical evaluation of osteoplastic material Bioplast-Dent (a review). Clinical Dentistry (Russia). 2020; 2 (94): 46—54 (In Russ.). eLIBRARY ID: 43125604
- Korotkih N., Bugrimov D. Justification of osteoplastic preparation “Bioplast-dent” and “Klipdent” in the experiment. Scientific and Medical Bulletin of the Central Chernozem Region. 2013; 52: 200—202 (In Russ.). eLIBRARY ID: 25730135
- Gosain A.K., Santoro T.D., Song L.S., Capel C.C., Sudhakar P.V., Matloub H.S. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Plast Reconstr Surg. 2003; 112 (2): 515—27. PMID: 12900610
- Wang J., Glimcher M.J. Characterization of matrix-induced osteogenesis in rat calvarial bone defects: II. Origins of bone-forming cells. Calcif Tissue Int. 1999; 65 (6): 486—93. PMID: 10594169
- Alper G., Bernick S., Yazdi M., Nimni M.E. Osteogenesis in bone defects in rats: the effects of hydroxyapatite and demineralized bone matrix. Am J Med Sci. 1989; 298 (6): 371—6. PMID: 2556916
- Lee D.J., Kwon J., Kim Y.I., Wang X., Wu T.J., Lee Y.T., Kim S., Miguez P., Ko C.C. Effect of pore size in bone regeneration using polydopamine-laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mould printing technology. Orthod Craniofac Res. 2019; 22 Suppl 1: 127—133. PMID: 31074145
- Zhou D., Qi C., Chen Y.X., Zhu Y.J., Sun T.W., Chen F., Zhang C.Q. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int J Nanomedicine. 2017; 12: 2673—2687. PMID: 28435251
- Haritonov D.Yu., Domashevskaya E.P., Azarova E.A., Goloschapov D.L. The comparison of morphological and structural characteristics of the human mandibular bone tissue and the osteoplastic material “Klipdent”, “Bioplast-dent”. Applied and IT Research in Medicine. 2014; 2: 63—67 (In Russ.). eLIBRARY ID: 22927213
Downloads
Received
October 16, 2022
Accepted
November 8, 2022
Published on
December 21, 2022