DOI:

10.37988/1811-153X_2021_1_144

Physical, mechanical and microbiological characteristics of the first domestic base material hybrid polymerization

Authors

  • D.I. Grachev 1, PhD in Medical Sciences, associate professor of the Dentistry diseases propaedeutics Department
    ORCID: 0000-0002-5758-7485
  • V.N. Tsarev 1, PhD in Medical Sciences, full professor of the Microbiology, virology, immunology Department, director of the Medico-dental research Institute
    ORCID: 0000-0002-3311-0367
  • E.R. Majidova 1, PhD in Medical Sciences, assistant professor of the Prosthetic dentistry Department
    ORCID: 0000-0002-5879-7580
  • N.N. Malginov 1, PhD in Medical Sciences, full professor of the Prosthodontics technology Department
    ORCID: 0000-0003-4829-6851
  • I.V. Zolotnisky 1, PhD in Medical Sciences, full professor of the Prosthodontics Department
    ORCID: 0000-0001-7717-0540
  • A.V. Tsimbalistov 2, PhD in Medical Sciences, full professor of the Prosthodontics Department
    ORCID: 0000-0002-4474-7611
  • I.V. Voytyatskaya 2, PhD in Medical Sciences, full professor of the of General dentistry Department
    ORCID: 0000-0002-2382-2993
  • V.P. Chuev 3, PhD in Engineering, general director
    ORCID: 0000-0002-1033-0789
  • S.D. Arutyunov 1, PhD in Medical Sciences, full professor of the Dentistry diseases propaedeutics Department
    ORCID: 0000-0001-6512-8724
  • 1 Moscow State University of Medicine and Dentistry, 127473, Moscow, Russia
  • 2 Belgorod State University, 308015, Belgorod, Russia
  • 3 “VladMiVa Experimental Plant” JSC, 308023, Belgorod, Russia

Abstract

The negative impact of the residual acrylic monomer present in dental polymethyl methacrylates (PMMA), the high cost of monomer-free thermoplastic polymers, contribute to the spread of the domestic base material of light polymerization “Nolatek” (VladMiva, Russia). However, various data on the physical and mechanical properties of the material and the methods of polymerization limit its application. The purpose and objectives of our study was to study the strength characteristics of the material “Nolatek” polymerized in various ways, followed by the study of adhesion of test strains of bacteria and fungi to it.
Materials and methods.
We have carried out bending tests on samples made of “Nolatek” material polymerized using various technologies, as well as the index of adhesion of microorganisms to “Nolatek” material.
Results.
Specimens from “Nolatek” material polymerized by hybrid technology during bending tests showed a value equal to 67.289±3.327 MPa. The adhesion index of strains — P. intermedia and C. albicnas is statistically significantly lower for samples polymerized using hybrid technology than when using light polymerization.
Conclusion.
Hybrid polymerization of the base material Nolatek is able to improve the physical, mechanical and microbiological properties of removable denture constructions.

Key words:

removable dentures, acrylic polymers, physical and mechanical properties, microbial adhesion

For Citation

[1]
Grachev D.I., Tsarev V.N., Majidova E.R., Malginov N.N., Zolotnisky I.V., Tsimbalistov A.V., Voytyatskaya I.V., Chuev V.P., Arutyunov S.D. Physical, mechanical and microbiological characteristics of the first domestic base material hybrid polymerization. Clinical Dentistry (Russia).  2021; 1 (97): 144—148. DOI: 10.37988/1811-153X_2021_1_144

References

  1. Arutyunov S.D., Afanasyeva V.V., Kovalskaya T.V., Didenko L.V., Tsarev V.N., Ippolitov E.V. Features of microbic biodestruction of dentures polymeric bases in the cold polymerization plastic repair zone. — Cathedra. — 2016; 55: 30—4 (In Russ.).
  2. Afanasyeva V.V., Arutyunov D.S., Deev M.S., Ippolitov E.V., Tsaryova T.S. Clinical and microbiological aspects of the formation of microbial bio-films on the structural materials used for repair and perebazirovka removable dentures. — Russian Journal of Dentistry. — 2015; 2: 44—6 (In Russ.).
  3. Zudin P.S., Tsalikova N.A., Minashkina A.A. The study of microbial adhesion to the new base material Nolatek. — Dental Forum. — 2017; 4: 34—5 (In Russ.).
  4. Ippolitov E.V., Didenko L.V., Tzarev V.N. The characteristics of morphology of biofilm of periodontium under inflammatory diseases of gums (chronic catarrhal gingivitis, chronic periodontitis, candida-associated periodontitis) according results of electronic microscopy. — Russian Clinical Laboratory Diagnostics. — 2015; 12: 59—64 (In Russ.).
  5. Dubova L.V., Lebedenko I.Yu., Madzhidova E.R., Deev M.S. Sanitary-chemical and toxicological study of a new polymeric material for bases dentures «Nolatek». — Russian Journal of Dentistry. — 2015; 1: 4—7 (In Russ.).
  6. Dubova L.V., Madzhidova R.E., Dzaurova M.A., Kitkina T.B., Lebedenko I.Yu. Next the results of the application of removable dentures with a new base of domestic material. — Russian Journal of Dentistry. — 2016; 1: 16—9 (In Russ.).
  7. Petrosyan A.F., Lebedenko I.Yu. Prevention of fractures of complete removable lamellar dentures with pronounced torus. — Clinical Dentistry (Russia). — 2020; 1 (93): 86—9 (In Russ.).
  8. Soboleva A.V. The clinical, operational and aesthetic properties of the light-cured basic material «Nolatek». — The Dental Institute. — 2018; 1 (78); 104—5 (In Russ.).
  9. Trezubov V.V., Kosenko G.A. Qualitative description of removable dentures with thermoplastic basises. — The Dental Institute. — 2011; 1 (50): 58—9 (In Russ.).
  10. Hong G., Murata H., Li Y.A., Sadamori S., Hamada T. Influence of denture cleansers on the color stability of three types of denture base acrylic resin. — J Prosthet Dent. — 2009; 101 (3): 205—13. PMID: 19231574
  11. Azzarri M.J., Cortizo M.S., Alessandrini J.L. Effect of the curing conditions on the properties of an acrylic denture base resin microwave-polymerised. — J Dent. — 2003; 31 (7): 463—8. PMID: 12927457
  12. León B.L.T., Del Bel Cury A.A., Rodrigues Garcia R.C.M. Loss of residual monomer from resilient lining materials processed by different methods. — Revista Odonto Ciência. — 2008; 23 (3): 215—9. https://revistaseletronicas.pucrs.br
  13. Bayraktar G., Guvener B., Bural C., Uresin Y. Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins. — J Biomed Mater Res B Appl Biomater. — 2006; 76 (2): 340—5. PMID: 16161124
  14. Urban V.M., Machado A.L., Vergani C.E., Giampaolo E.T., Pavarina A.C., de Almeida F.G., Cass Q.B. Effect of water-bath post-polymerization on the mechanical properties, degree of conversion, and leaching of residual compounds of hard chairside reline resins. — Dent Mater. — 2009; 25 (5): 662—71. PMID: 19135715
  15. Çelebi N., Yüzügüllü B., Canay Ş, Yücel Ü. Effect of polymerization methods on the residual monomer level of acrylic resin denture base polymers. — Polymers for Advanced Technologies. — 2008; 19 (3): 201—6. DOI: 10.1002/pat.996
  16. Gutierrez-Villarreal M.H., Rodríguez-Velazquez J. The effect of citrate esters as plasticizers on the thermal and mechanical properties of poly(methyl methacrylate). — Journal of Applied Polymer Science. — 2007; 105: 2370—5. DOI: 10.1002/app.25482
  17. Faltermeier A., Rosentritt M., Müssig D. Acrylic removable appliances: comparative evaluation of different postpolymerization methods. — Am J Orthod Dentofacial Orthop. — 2007; 131 (3): 301.e16—22. PMID: 17346579
  18. Boeckler A.F., Morton D., Poser S., Dette K.-E. Release of dibenzoyl peroxide from polymethyl methacrylate denture base resins: an in vitro evaluation. — Dent Mater. — 2008; 24 (12): 1602—7. PMID: 18471871
  19. Kawahara T., Nomura Y., Tanaka N., Teshima W., Okazaki M., Shintani H. Leachability of plasticizer and residual monomer from commercial temporary restorative resins. — J Dent. — 2004; 32 (4): 277—83. PMID: 15053910
  20. Gonçalves T.S., de Menezes L.M., Silva L.E.A. Residual monomer of autopolymerized acrylic resin according to different manipulation and polishing methods. An in situ evaluation. — Angle Orthod. — 2008; 78 (4): 722—7. PMID: 18302474
  21. Viljanen E.K., Langer S., Skrifvars M., Vallittu P.K. Analysis of residual monomers in dendritic methacrylate copolymers and composites by HPLC and headspace-GC/MS. — Dent Mater. — 2006; 22 (9): 845—51. PMID: 16380160
  22. Zissis A., Yannikakis S., Polyzois G., Harrison A. A long term study on residual monomer release from denture materials. — Eur J Prosthodont Restor Dent. — 2008; 16 (2): 81—4. PMID: 18637384
  23. Filho R.R., de Paula L.V., Costa V.C., Seraidarian P.I. Avaliação de monômero residual em resinas acrílicas de uso ortodôntico e protético: análise por espectroscopia. — Revista Dental Press de Ortodontia e Ortopedia Facial. — 2007; 2: 96—104 (In Portuguese). DOI: 10.1590/S1415—54192007000200014
  24. Lai Y-L., Chen Y-T., Lee S-Y., Shieh T-M., Hung S-L. Cytotoxic effects of dental resin liquids on primary gingival fibroblasts and periodontal ligament cells in vitro. — J Oral Rehabil. — 2004; 31 (12): 1165—72. PMID: 15544651
  25. Sofou A., Tsoupi I., Karayannis M., Owall B. Determination of residual monomers released from soft lining materials with the use of HPLC. — Pakistan Journal of Analytical & Environmental Chemistry. — 2007; 2: 41—52. http://www.pjaec.pk
  26. Leggat P.A., Kedjarune U. Toxicity of methyl methacrylate in dentistry. — Int Dent J. — 2003; 53 (3): 126—31. PMID: 12873108
  27. Aalto-Korte K., Alanko K., Kuuliala O., Jolanki R. Methacrylate and acrylate allergy in dental personnel. — Contact Dermatitis. — 2007; 57 (5): 324—30. PMID: 17937748
  28. Willershausen B., Callaway A., Ernst C.P., Stender E. The influence of oral bacteria on the surfaces of resin-based dental restorative materials—an in vitro study. — Int Dent J. — 1999; 49 (4): 231—9. PMID: 10858759

Received

January 20, 2021

Published on

March 1, 2021