DOI:
10.37988/1811-153X_2025_3_112Comparison of Ti6Al4V titanium alloy membrane prototypes for bone defect repair made by laser sintering and electron beam melting
Downloads
Abstract
A comparative analysis of the microstructure and mechanical properties of guided bone regeneration frame membranes made from Ti6Al4V titanium alloy powder using 3D printing technology is presented in this paper. Two different methods were used to produce the samples: direct laser sintering of metals (DMLS) and electron beam melting (EBM). The plates, measuring 30×10×1 mm, were formed from layers 30 µm thick. The surface morphology of the samples was studied at both the micro and macro levels using scanning electron microscopy (SEM) and scanning impulse acoustic microscopy (SIAM). Biocompatibility was assessed both in vitro with mesenchymal stem cell (MSC) cultures and in vivo with laboratory animals. Mechanical properties were evaluated using a three-point bending test, which revealed differences in surface profile depth that was 100 and 150 µm for the DMLS and EBM correspondingly. Samples produced using DMLS technology demonstrated higher strength 2,180±20.7 MPa and elasticity 53,449±200 MPa than those produced by EBM strength 1500±26.1 and elasticity 25,633±125 MPa, according to the results of the mechanical tests. A more active proliferation of MSCs was observed in vitro in the DMLS samples, which was 70% higher compared to EMB and the control group. The bone tissue response to both types of titanium implants was good, with high levels of osseointegration, as confirmed by X-ray microtomography (µCT).Key words:
guided bone regeneration, titanium alloy, laser sintering of metals, Ti6Al4V titanium, dental implant, electron beam melting, porous microstructureFor Citation
[1]
Dolgalev A.A., Nalchajyan H.M., Muraev A.A., Petronyuk Y.S., Khramtsova E.A., Krupnin A.E., Choniashvili D.Z., Ivanov S.Yu. Comparison of Ti6Al4V titanium alloy membrane prototypes for bone defect repair made by laser sintering and electron beam melting. Clinical Dentistry (Russia). 2025; 28 (3): 112—118. DOI: 10.37988/1811-153X_2025_3_112
References
- Degidi M., Scarano A., Piattelli A. Regeneration of the alveolar crest using titanium micromesh with autologous bone and a resorbable membrane. J Oral Implantol. 2003; 29 (2): 86—90. PMID: 12760452
- Tumedei M., Mijiritsky E., Mourão C.F., Piattelli A., Degidi M., Mangano C., Iezzi G. Histological and biological response to different types of biomaterials: A narrative single research center experience over three decades. Int J Environ Res Public Health. 2022; 19 (13): 7942. PMID: 35805602
- Bayliss L., Mahoney D.J., Monk P. Normal bone physiology, remodelling and its hormonal regulation. Surgery (Oxford). 2012; 30 (2): 47—53. DOI: 10.1016/j.mpsur.2011.12.009
- Sumner D.R., Turner T.M., Igloria R., Urban R.M., Galante J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech. 1998; 31 (10): 909—17. PMID: 9840756
- Alvarez K., Nakajima H. Metallic scaffolds for bone regeneration. Materials. 2009; 3: 790—832. DOI: 10.3390/ma2030790
- Motyka M., Sieniawski J., Ziaja W. Microstructural aspects of superplasticity in Ti6Al4V alloy. Materials Science and Engineering: A. 2014; 599: 57—63. DOI: 10.1016/j.msea.2014.01.067
- Didier P., Piotrowski B., Fischer M., Laheurte P. Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young’s modulus alloy. Mater Sci Eng C Mater Biol Appl. 2017; 74: 399—409. PMID: 28254310
- Han Q., Wang C., Chen H., Zhao X., Wang J. Porous tantalum and titanium in orthopedics: A review. ACS Biomater Sci Eng. 2019; 5 (11): 5798—5824. PMID: 33405672
- Olkhov A.A., Staroverova O.V., Iordanskii A.L., Rogovina S.Z., Berlin A.A., Bonartsev A.P., Zharkova I.I., Sklyanchuk E.D., Ishchenko A.A. Structure and properties of ultrathin poly-(3-hydroxybutirate) fibers modified by silicon and titanium dioxide particles. Polymer Science, Series D. 2015; 2: 100—109. DOI: 10.1134/S1995421215020124
- Niinomi M., Boehlert C.J. Titanium alloys for biomedical applications. In: Niinomi M., Narushima T., Nakai M. (eds) Advances in metallic biomaterials. Springer-Verlag Berlin Heidelberg, 2015. Pp. 179—213. DOI: 10.1007/978-3-662-46836-4_8
- Sorgente D., Palumbo G., Piccininni A., Guglielmi P., Aksenov S.A. Investigation on the thickness distribution of highly customized titanium biomedical implants manufactured by superplastic forming. CIRP Journal of Manufacturing Science and Technology. 2018; 20: 29—35. DOI: 10.1016/j.cirpj.2017.09.004
- Munir K., Lin J., Wright P.F.A., Ozan S., Li Y., Wen C. Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications. Acta Biomater. 2022; 149: 387—398. PMID: 35817341
- Goriainov V., Cook R., M Latham J., G Dunlop D., Oreffo R.O. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater. 2014; 10 (10): 4043—57. PMID: 24932769
- Prasad K., Bazaka O., Chua M., Rochford M., Fedrick L., Spoor J., Symes R., Tieppo M., Collins C., Cao A., Markwell D., Ostrikov K.K., Bazaka K. Metallic biomaterials: Current challenges and opportunities. Materials (Basel). 2017; 10 (8): 884. PMID: 28773240
- Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L. Biodegradable materials and metallic implants — A review. J Funct Biomater. 2017; 8 (4): 44. PMID: 28954399
- Kulikova A.A., Dymnikov A.B., Ivanov S.Yu., Muraev A.A., Tumanyan G.A. [Research Per-Ingvar Brånemark in the field of osseointegration and bone regeneration (review, part 1)]. Clinical Dentistry (Russia). 2021; 2: 72—76 (In Russian). eLIBRARY ID: 46322604 19
- Ronzhin D.A., Grigoriyants A.G., Kholopov A.A. Influence of technological parameters on the metal structure of produced by direct metal deposition vt6 titanium powder. BMSTU Journal of Mechanical Engineering. 2022; 9 (750): 30—42 (In Russian). eLIBRARY ID: 49515567
- Păcurar R., Berce P., Petrilak A., Nemeş O., Borzan C.Ş.M., Harničárová M., Păcurar A. Selective laser sintering of PA 2200 for hip implant applications: Finite element analysis, process optimization, morphological and mechanical characterization. Materials (Basel). 2021; 14 (15): 4240. PMID: 34361433
- Petronyuk Y.S., Khramtsova E.A., Levin V.M., Bonartsev A.P., Voinova V.I., Bonartseva G.A., Muraev A.A., Asfarov T.F., Guseynov N.A. Developing techniques of acoustic microscopy for monitoring processes of osteogenesis in regenerative medicine. Bulletin of the Russian Academy of Sciences: Physics. 2020; 6: 653—656. DOI: 10.3103/S1062873820060179
- Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9 (7): 671—5. PMID: 22930834 23
- Leo Kumar S.P., Avinash D. Review on effect of Ti-alloy processing techniques on surface-integrity for biomedical application. Materials and Manufacturing Processes. 2020; 8: 869—892. DOI: 10.1080/10426914.2020.1748195
- Hussein M.O., Alruthea M.S. Evaluation of bone-implant interface stress and strain using heterogeneous mandibular bone properties based on different empirical correlations. Eur J Dent. 2021; 15 (3): 454—462. PMID: 33511598
- Le Guéhennec L., Soueidan A., Layrolle P., Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007; 23 (7): 844—54. PMID: 16904738
Downloads
Received
April 12, 2025
Accepted
August 14, 2025
Published on
September 21, 2025




