DOI:

10.37988/1811-153X_2025_3_48

Characterization of the gram-positive bacterial profile in the oral fluid of HIV-infected patients diagnosed with oral candidiasis

Authors

  • O.P. Galkina 1, PhD in Medicine, associate professor and head of the Propaedeutics dentistry Department
    ORCID: 0000-0002-8153-0999
  • A.V. Grokhotova 1, postgraduate at the Propaedeutics dentistry Department
    ORCID: 0000-0003-0740-0763
  • 1 Crimean Federal University, 295006, Simferopol, Russia

Abstract

The health of the oral microbiome plays a crucial role in maintaining the overall health of HIV-infected patients. Alterations in the oral microbiota constitute a key factor contributing to the development of oral candidiasis. Contemporary studies have largely focused on describing microbial changes without providing an integrated understanding of their clinical implications, highlighting the need for comprehensive research to identify specific interaction patterns and assessing their impact on disease progression. The aim of this study is to determine the quantitative and qualitative composition of Gram-positive bacteria in the oral fluid of HIV-infected patients with diagnosed oral candidiasis.
Materials and methods.
The study enrolled 31 HIV-positive patients with confirmed oral candidiasis (study group) and 35 apparently healthy individuals (control group). The microbiome of unstimulated whole saliva was analyzed by gas chromatography—mass spectrometry (GC—MS) as described by G.A. Osipov.
Results.
In HIV-positive patients, the colonization density was markedly increased for Enterococcus spp. (157.8%), Streptococcus spp. (102%), Streptococcus mutans (85.4%), Staphylococcus epidermidis (100%), Staphylococcus aureus (303.5%), Peptostreptococcus anaerobius (21.6%), Propionibacterium acnes (127.2%), and Eubacterium spp. (122.8%). The expansion of these taxa, which correlated with the overgrowth of Candida spp., is explained by their capacity to form mixed biofilms and to secrete enzymes and organic acids that modify pH and substrate composition, thereby facilitating fungal colonization and increasing the risk of dental caries. Concomitantly, a sharp decline or complete elimination was recorded for Bacillus cereus (−100%), Clostridium spp. (−88.4%), Nocardia spp. (−86.4%), Lactobacillus spp. (−66.1%), Bifidobacterium spp. (−72.9%), and Actinomyces spp. (−100%). The reduction of these bacterial consortia likely reflects the loss of normally produced organic acids, metabolites, and bacteriocins that restrain Candida growth; their removal weakens the ecosystem, promoting fungal colonization and proliferation.
Conclusion.
HIV-infected patients with diagnosed oral candidiasis exhibit pronounced dysbiosis of the oral cavity. In the microbial landscape of Gram-positive bacteria in the oral fluid, there is a critical reduction of several taxa—including Bacillus cereus, Clostridium spp., Nocardia spp., Rhodococcus spp., Corynebacterium spp., Propionibacterium jensenii, Clostridium perfringens, and Clostridium ramosum—up to complete elimination. Additionally, HIV-infected patients with oral candidiasis show an increased proportion of opportunistic pathogens such as Staphylococcus spp., Streptococcus spp., Enterococcus spp., and Peptostreptococcus anaerobius, as well as Candida genus.

Key words:

oral candidiasis, HIV infection

For Citation

[1]
Galkina O.P., Grokhotova A.V. Characterization of the gram-positive bacterial profile in the oral fluid of HIV-infected patients diagnosed with oral candidiasis. Clinical Dentistry (Russia).  2025; 28 (3): 48—54. DOI: 10.37988/1811-153X_2025_3_48

References

  1. Charushin A.O., Elovikov A.M., Charushina I.P. New opportunities for complex treatment of oropharyngeal candidiasis in HIV-infected patients in the later stages of the disease. Therapeutic Archive. 2023; 1: 52—56 (In Russian). eLIBRARY ID: 50329840
  2. Trofymets E.K. Epidemiological peculiarities of the oral cavity pathology of the HIV-infected patients. University Clinic. 2017; 4—1 (25): 205—208 (In Russian). eLIBRARY ID: 30744593
  3. Bekaeva U.B., Galkina O.P., Vydashenko A.V. Oral candidiasis combined with COVID-19 (literature review). Clinical Dentistry (Russia). 2022; 3: 104—111 (In Russian). eLIBRARY ID: 49514210
  4. Brenchley J.M., Serrano-Villar S. From dysbiosis to defense: harnessing the gut microbiome in HIV/SIV therapy. Microbiome. 2024; 12 (1): 113. PMID: 38907315
  5. Platonova A.G., Osipov G.A., Boiko N.B., Kirillova N.V., Rodionov G.G. The chromatography-mass spectrometry analysis of microbial fatty acids in human biological fluids and their clinical significance. Russian Clinical Laboratory Diagnostics. 2015; 12: 46—55 (In Russian). eLIBRARY ID: 25304699
  6. Li H., Miao M.X., Jia C.L., Cao Y.B., Yan T.H., Jiang Y.Y., Yang F. Interactions between Candida albicans and the resident microbiota. Front Microbiol. 2022; 13: 930495. PMID: 36204612
  7. Kim D., Lee K.D., Choi C. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production-An overview. AIMS Agriculture and Food. 2021; 1: 216—234 (In). DOI: 10.3934/agrfood.2021014
  8. Metwalli K.H., Khan S.A., Krom B.P., Jabra-Rizk M.A. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS Pathog. 2013; 9 (10): e1003616. PMID: 24146611
  9. Sztajer H., Szafranski S.P., Tomasch J., Reck M., Nimtz M., Rohde M., Wagner-Döbler I. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J. 2014; 8 (11): 2256—71. PMID: 24824668
  10. Bertolini M., Ranjan A., Thompson A., Diaz P.I., Sobue T., Maas K., Dongari-Bagtzoglou A. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog. 2019; 15 (4): e1007717. PMID: 31009520
  11. Kelly A.M., Leech J.M., Doyle S.L., McLoughlin R.M. Staphylococcus aureus-induced immunosuppression mediated by IL-10 and IL-27 facilitates nasal colonisation. PLoS Pathog. 2022; 18 (7): e1010647. PMID: 35776778
  12. Rossoni R.D., Ribeiro F.D.C., De Barros P.P., Mylonakis E., Junqueira J.C. A Prerequisite for health: Probiotics. In: Kambouris M.E., Velegraki A. (eds.) Microbiomics. Dimensions, applications, and translational implications of human and environmental microbiome research. Elsevier, 2020. Pp. 225—244. DOI: 10.1016/B978-0-12-816664-2.00011-6
  13. Galkina O.P., Grokhotova A.V. Use of the “Akvabiolis” spray in the treatment of oral candidiasis in HIV-infected patients. Vestnik fizioterapii i kurortologii. 2024; 2: 97 (In Russian). eLIBRARY ID: 75175807
  14. Mukherjee P.K., Chandra J., Retuerto M., Sikaroodi M., Brown R.E., Jurevic R., Salata R.A., Lederman M.M., Gillevet P.M., Ghannoum M.A. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog. 2014; 10 (3): e1003996. PMID: 24626467
  15. Fidel P.L. Jr, Thompson Z.A., Lilly E.A., Granada C., Treas K., Dubois K.R. 3rd, Cook L., Hashmi S.B., Lisko D.J., Mukherjee C., Vazquez J.A., Hagensee M.E., Griffen A.L., Leys E.J., Beall C.J. Effect of HIV/HAART and other clinical variables on the oral mycobiome using multivariate analyses. mBio. 2021; 12 (2): e00294—21. PMID: 33758093

Received

February 9, 2025

Accepted

August 11, 2025

Published on

September 21, 2025