DOI:

10.37988/1811-153X_2025_4_174

Adhesion of oral microbiota representatives to polymethylmethacrylate samples with a polyetheretherketone framework: an in vitro study

Authors

  • K.G. Akhmedov 1, assistant at the Surgical dentistry Department
    ORCID: 0009-0000-5195-3942
  • V.N. Tsarev 1, Doctor of Science in Medicine, full professor of the Microbiology, virology, immunology Department
    ORCID: 0000-0002-3311-0367
  • D.S. Arutyunov 1, PhD in Medical Sciences, associate professor of the Propaedeutics and prosthodontics technology Department
    ORCID: 0009-0002-9325-2751
  • M.V. Lomakin 1, Doctor of Science in Medicine, full professor of the Surgical dentistry Department
    ORCID: 0000-0003-3739-6275
  • S.M. Mustafaeva 2, PhD in Medical Sciences, assistant professor of the Institute of dentistry and maxillofacial surgery
    ORCID: 0000-0003-2645-4089
  • D.V. Shortanova 2, assistant at the Institute of dentistry and maxillofacial surgery
    ORCID: 0009-0003-1994-102X
  • D.I. Polyakov 1, PhD in Medical Sciences, assistant professor of the Prosthodontics and digital technologies Department
    ORCID: 0000-0003-1284-0093
  • A.A. Pivovarov 1, PhD in Medical Sciences, assistant professor of the Prosthodontics and digital technologies Department
    ORCID: 0000-0001-9778-0258
  • E.V. Kravchuk 3, PhD in Medical Sciences, assistant professor of the Healthcare management Department
  • 1 Russian University of Medicine, 127006, Moscow, Russia
  • 2 Kabardino-Balkarian State University, 360004, Nalchik, Russia
  • 3 Voronezh State Medical University, 394036, Voronezh, Russia

Abstract

Fracture of complete removable denture (CRD) bases is common in contemporary prosthodontic practice. High-strength polymer reinforcing meshes, particularly polyether-ether-ketone (PEEK), may serve as an alternative because they can chemically bond to PMMA and increase structural durability. In addition, the base composition can influence microbial adhesion—an important factor for preventing biodeterioration and infectious complications. Objectives — evaluate the effect of integrating a PEEK framework into the denture-base structure on adhesion of marker oral microorganisms, taking into account their specific interactions with composite materials.
Materials and methods.
Compared monolithic PMMA specimens (heat- and cold-cured), monolithic PEEK, and two PMMA+PEEK composites with a perforated ring-type framework and stoppers of different heights (0.5 mm on both sides; 1.0 mm on one side) (n=5 per group). Test strains: Streptococcus sanguinis, Porphyromonas gingivalis, Staphylococcus aureus, Candida albicans. The adhesion index (Ia) was defined as the fraction of cells retained after standardized inoculation and washing. Significance threshold: α=0.05.
Results.
On PMMA, bacterial Ia values were 0.54—0.70 (“substantial”), while C. albicans reached 0.74—0.75 (“high”). Relative to PMMA, PEEK showed lower Ia for Str. sanguinis (0.55 vs 0.69—0.70), P. gingivalis (0.34 vs 0.54), and C. albicans (0.59 vs 0.74—0.75) (all p<0.05); for S. aureus no difference was detected (0.66 vs 0.67—0.69; p>0.05). PMMA+PEEK composites showed lower Ia than PMMA for P. gingivalis (0.47—0.49 vs 0.54; p<0.05) and numerically lower values for Str. sanguinis (0.55—0.58 vs 0.69—0.70) and C. albicans (0.65—0.68 vs 0.74—0.75); for S. aureus differences were not significant (0.65—0.66 vs 0.67—0.69).
Conclusions.
Embedding a perforated PEEK framework in PMMA reduces adhesion of P. gingivalis and tends to reduce adhesion of Str. sanguinis and C. albicans, without affecting S. aureus. These findings support the bioinert properties of PEEK and its potential to limit microbial contamination of denture bases.

Key words:

dental prosthesis, removable, polymethyl methacrylate, polyetheretherketone, microbial adhesion, oral microbiota, prosthesis failure, surface properties

For Citation

[1]
Akhmedov K.G., Tsarev V.N., Arutyunov D.S., Lomakin M.V., Mustafaeva S.M., Shortanova D.V., Polyakov D.I., Pivovarov A.A., Kravchuk E.V. Adhesion of oral microbiota representatives to polymethylmethacrylate samples with a polyetheretherketone framework: an in vitro study. Clinical Dentistry (Russia).  2025; 28 (4): 174—180. DOI: 10.37988/1811-153X_2025_4_174

References

  1. Arutyunov S.D., Grachev D.I., Martynenko A.V. The medical social work with individuals of elderly and senile age with total loss of teeth. Problems of Social Hygiene, Public Health and History of Medicine. 2021; 3: 509—513 (In Russian). eLIBRARY ID: 46230510
  2. Ito K., Aida J., Yamamoto T., Ohtsuka R., Nakade M., Suzuki K., Kondo K., Osaka K., JAGES Group Individual- and community-level social gradients of edentulousness. BMC Oral Health. 2015; 15: 34. PMID: 25884467
  3. Arutyunov S.D., Muslov S.A., Ruzuddinov N.S., Chizhmakov E.A., Grachev D.I., Kharakh Y.N., Nersesov G.S. Quality of life of patients with total loss of teeth and psychometric properties of the OHIP-20 DG enquirer. Part 2. Monitoring stages of dental orthopedic treatment. Russian Journal of Dentistry. 2021; 5: 399—408 (In Russian). eLIBRARY ID: 48846045
  4. Dye B.A. The global burden of oral disease: Research and public health significance. J Dent Res. 2017; 96 (4): 361—363. PMID: 28318392
  5. Porfiriev B.N., Shirov A.A., Yanushevich O.O., Grachev D.I., Polzikov D.A., Zolotnitskii I.V., Arutyunov S.D. Development of subsidized prosthodontic care: Socio-economic problems and opportunities. Studies on Russian Economic Development. 2023; 1: 68—76. DOI: 10.1134/S1075700723010161
  6. Kumari R., Bala S. Assessment of cases of complete denture fracture. J Pharm Bioallied Sci. 2021; 13 (Suppl 2): S1558-S1560. PMID: 35018028
  7. Afanas’eva V.V., Lebedenko I.Y., Grachev D.I., Arutyunov S.D. Improving the efficiency of restoration removable plate dentures after the failure. Russian Journal of Dentistry. 2014; 5: 4—6 (In Russian). eLIBRARY ID: 22512487
  8. Bazhin A.A. Clinical and experimental substantiation of the use of a combined base of a removable prosthesis in patients with complete absence of teeth: master’s thesis. Perm, 2022. 174 p. (In Russian).
  9. Chizhmakov E.A., Arutyunov A.S., Muslov S.A., Bochkareva S.A., Panov I.L., Akhmedov G.D., Buslovich D.G., Panin S.V., Arutyunov S.D. Application of polyethylene terephthalate as a denture base material for manufacturing temporary removable complete dentures. Mechanics of Composite Materials. 2024; 2: 227—242. DOI: 10.1007/s11029-024-10186-2
  10. Dhiman R.K., Chowdhury S.R. Midline fractures in single maxillary complete acrylic vs flexible dentures. Med J Armed Forces India. 2009; 65 (2): 141—5. PMID: 27408221
  11. Al-Thobity A.M., Gad M.M. Effect of silicon dioxide nanoparticles on the flexural strength of heat-polymerized acrylic denture base material: A systematic review and meta-analysis. Saudi Dent J. 2021; 33 (8): 775—783. PMID: 34938017
  12. Al-Harbi F.A., Abdel-Halim M.S., Gad M.M., Fouda S.M., Baba N.Z., Al-Rumaih H.S., Akhtar S. Effect of nanodiamond addition on flexural strength, impact strength, and surface roughness of PMMA denture base. J Prosthodont. 2019; 28 (1): e417—e425. PMID: 30353608
  13. Somani M.V., Khandelwal M., Punia V., Sharma V. The effect of incorporating various reinforcement materials on flexural strength and impact strength of polymethylmethacrylate: A meta-analysis. J Indian Prosthodont Soc. 2019; 19 (2): 101—112. PMID: 31040543
  14. Mayinger F., Fiebig M., Roos M., Eichberger M., Lümkemann N., Stawarczyk B. Bonding behavior between polyetheretherketone and polymethylmethacrylate acrylic denture polymer. J Adhes Dent. 2021; 23 (2): 145—158. PMID: 33825428
  15. Arutyunov S.D., Dibirov T.M., Nersesov G.S., Stepanov A.G., Bagdasaryan G.G., Ordyan G.A., Grachev D.I. Removable lamellar dental prosthesis with reinforced base. Patent RU #2791989, effective from 15.03.2023 (In Russian).
  16. Arutyunov S.D., Dibirov T.M., Nersesov G.S., Arutyunov A.S., Stepanov A.G., Bagdasaryan G.G., Grachev D.I. Method of manufacturing a removable lamellar dental prosthesis with a polymer mesh for reinforcing the bases of removable dental prostheses of the upper jaw. Patent RU #2791086, effective from 02.03.2023 (In Russian).
  17. Arutyunov S.D., Ippolitov E.V., Pivovarov A.A., Tsarev V.N. Relationship between basic dental polymethyl methacrylate polymer roughness and surface topography and microbial biofilm formation using different polishing techniques. Kazan Medical Journal. 2014; 2: 224—231 (In Russian). eLIBRARY ID: 21701499
  18. Tsarev V.N., Ippolitov E.V., Trefilov A.G., Arutyunov S.D., Pivovarov A.A. Features of adhesion of anaerobic periodontopathogenic bacteria and Candida albicans fungi to experimental samples of basis dental plastic depending on surface roughness and polishing method. Journal of Microbiology, Epidemiology and Immunobiology. 2014; 6: 21—27 (In Russian). https://tinyurl.com/4edtk77n
  19. Avtandilov G.A. Biodestruction of dentures made of polymer materials (experimental study): master’s thesis. Moscow, 2013. 87 p. (In Russian).
  20. Olms C., Yahiaoui-Doktor M., Remmerbach T.W., Stingu C.S. Bacterial Colonization and Tissue Compatibility of Denture Base Resins. Dent J (Basel). 2018; 6 (2): 20. PMID: 29914101
  21. Arutyunov A.S., Tsareva T.V., Kirakosyan L.G., Levchenko I.M. Features and significance of adhesion of bacteria and fungi of the oral cavity as the initial stage of the formation of a microbial biofilm on dental polymer materials. Stomatology. 2020; 2: 79—84 (In Russian). eLIBRARY ID: 42851810
  22. Monteiro D.R., de Souza Batista V.E., Caldeirão A.C.M., Jacinto R.C., Pessan J.P. Oral prosthetic microbiology: aspects related to the oral microbiome, surface properties, and strategies for controlling biofilms. Biofouling. 2021; 37 (4): 353—371. PMID: 34139899
  23. Schubert A., Wassmann T., Holtappels M., Kurbad O., Krohn S., Bürgers R. Predictability of microbial adhesion to dental materials by roughness parameters. Coatings. 2019; 9 (7): 456. DOI: 10.3390/coatings9070456
  24. Arutyunov S., Kirakosyan L., Dubova L., Kharakh Y., Malginov N., Akhmedov G., Tsarev V. Microbial adhesion to dental polymers for conventional, computer-aided subtractive and additive manufacturing: A comparative in vitro study. J Funct Biomater. 2022; 13 (2): 42. PMID: 35466224
  25. Bural C., Aktaş E., Deniz G., Ünlüçerçi Y., Bayraktar G. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles. J Appl Oral Sci. 2011; 19 (4): 306—12. PMID: 21956586
  26. Wei X., Pan Y., Wang M., Wang Y., Lin H., Jiang L., Lin D., Cheng H. Comparative analysis of leaching residual monomer and biological effects of four types of conventional and CAD/CAM dental polymers: an in vitro study. Clin Oral Investig. 2022; 26 (3): 2887—2898. PMID: 35083585
  27. Al-Dulaijan Y.A., Balhaddad A.A. Prospects on tuning bioactive and antimicrobial denture base resin materials: A narrative review. Polymers (Basel). 2022; 15 (1): 54. PMID: 36616404
  28. Manin O.I., Dubova L.V., Romodanovsky P.O. Comparative assessment of individual sensitivity to structural materials of removable dentures in patients with intolerance phenomena. Russian Stomatology. 2022; 3: 51—52 (In Russian). eLIBRARY ID: 49387855
  29. Schmutzler A., Stingu C.S., Günther E., Lang R., Fuchs F., Koenig A., Rauch A., Hahnel S. Attachment of respiratory pathogens and Candida to denture base materials A pilot study. J Clin Med. 2023; 12 (19): 6127. PMID: 37834772
  30. Ryzhova I.P., Chuev V.V., Tsimbalistov A.V., Shtana V.S., Dzhanashia V.T. Comparative analysis of microbial adhesion to traditional and new basic materials used in prosthetic dentistry. Clinical Dentistry (Russia). 2019; 3 (91): 62—64 (In Russian). eLIBRARY ID: 41188362
  31. Chizhmakov E.A., Tsareva T.V., Podporin M.S., Ippolitov E.V., Tlupov I.V., Balagova Z.E., Timoshchenko M.V., Arutyunov A.S. Microbial adhesion to samples of complete removable dentures of polymethylmethacrylate-polyethyleneterephthalate composition. Clinical Dentistry (Russia). 2023; 4: 64—70 (In Russian). eLIBRARY ID: 59397992
  32. Andryukov B.G., Romashko R.V., Efimov T.A., Lyapun I.N., Bynina M.P., Matosova E.V. Mechanisms of adhesive-coadhesive interaction of bacteria in the formation of a biofilm. Molecular Genetics, Microbiology and Virology. 2020; 4: 155—161 (In Russian). eLIBRARY ID: 44312344
  33. Alqutaibi A.Y., Baik A., Almuzaini S.A., Farghal A.E., Alnazzawi A.A., Borzangy S., Aboalrejal A.N., AbdElaziz M.H., Mahmoud I.I., Zafar M.S. Polymeric denture base materials: A review. Polymers (Basel). 2023; 15 (15): 3258. PMID: 37571151
  34. Gad M.M., Abualsaud R., Khan S.Q. Hydrophobicity of denture base resins: A systematic review and meta-analysis. J Int Soc Prev Community Dent. 2022; 12 (2): 139—159. PMID: 35462737
  35. Silva-Dias A., Miranda I.M., Branco J., Monteiro-Soares M., Pina-Vaz C., Rodrigues A.G. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol. 2015; 6: 205. PMID: 25814989

Received

March 3, 2025

Accepted

September 30, 2025

Published on

December 18, 2025