DOI:

10.37988/1811-153X_2025_4_126

Evaluation of soft tissue and bony structures of the hard palate in patients with transversal jaw anomalies

Authors

  • P.O. Golomazdin 1, postgraduate student of the Maxillofacial and plastic surgery Department
    ORCID: 0009-0008-8471-4524
  • A.Yu. Drobyshev 1, Russian Academy of Science corresponding member, Doctor of Science in Medicine, full professor of the Maxillofacial and plastic surgery Department
    ORCID: 0000-0002-1710-6923
  • E.A. Melikov 1, PhD in Medical Sciences, assistant professor of the Maxillofacial and plastic surgery Department
    ORCID: 0000-0001-5173-6956
  • N.S. Drobysheva 1, PhD in Medical Sciences, associate professor of the Orthodontics Department
    ORCID: 0000-0002-5612-3451
  • I.I. Yakimenko 1, PhD in Medical Sciences, associate professor of the Maxillofacial and plastic surgery Department
    ORCID: 0000-0002-9088-0173
  • V.M. Mikhaylyukov 1, PhD in Medical Sciences, associate professor of the Maxillofacial and plastic surgery Department
    ORCID: 0009-0007-4736-4468
  • D.I. Meliev 1, senior laboratory technician at the Maxillofacial and plastic surgery Department
    ORCID: 0000-0001-8034-7618
  • M.A. Katashev 1, postgraduate student of the Maxillofacial and plastic surgery Department
    ORCID: 0009-0000-8276-7923
  • 1 Russian University of Medicine, 127473, Moscow, Russia

Abstract


Materials and methods.
Twenty patients with a maxillary narrowing of more than 5 mm were examined: 10 patients with skeletal class II and 10 patients with skeletal class III. According to CBCT and intraoral 3D scanning of the maxilla, the thickness of the soft-tissue and bone structures of the hard palate was measured.
Results.
Due to the presence of individual differences, a map of the thickness of the hard palate was created for each group. Patients with skeletal Class II have higher thickness values (3.9—8.2 mm) than patients with skeletal Class III (2.5—6.9 mm). The soft-tissue structures of the hard palate in both groups showed insignificant statistical differences.
Conclusions.
In the anterior and posterior region of the palate, located within 2 mm of the midline palatal suture in the area from ML2 to AP2, the bone was the thickest of all the available areas, with a thickness of 6.8 mm. The thickness of soft tissue structures in patients with skeletal Class II was 0.14% less than in patients with skeletal Class III.

Key words:

maxillary constriction, CBCT, 3D scan

For Citation

[1]
Golomazdin P.O., Drobyshev A.Yu., Melikov E.A., Drobysheva N.S., Yakimenko I.I., Mikhaylyukov V.M., Meliev D.I., Katashev M.A. Evaluation of soft tissue and bony structures of the hard palate in patients with transversal jaw anomalies. Clinical Dentistry (Russia).  2025; 28 (4): 126—131. DOI: 10.37988/1811-153X_2025_4_126

References

  1. Drobysheva N.S., Lezhnev D.A., Petrovskaya V.V., Batova M.A., Perova N.G., Mallaeva A.B., Kaminskiy-Dvorzhetskiy N.A., Mirzoev M.L. Cone beam computed tomography use in orthodontics. Orthodontics. 2019; 1 (85): 32—39 (In Russian). eLIBRARY ID: 41121595
  2. Brunetto D.P., Sant’Anna E.F., Machado A.W., Moon W. Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Palatal Expansion (MARPE). Dental Press J Orthod. 2017; 22 (1): 110—125. PMID: 28444019
  3. Chun J.H., de Castro A.C.R., Oh S., Kim K.H., Choi S.H., Nojima L.I., Nojima M.D.C.G., Lee K.J. Skeletal and alveolar changes in conventional rapid palatal expansion (RPE) and miniscrew-assisted RPE (MARPE): a prospective randomized clinical trial using low-dose CBCT. BMC Oral Health. 2022; 22 (1): 114. PMID: 35395801
  4. Muzychyna A.A., Stanishevsky O.A., Avsyankin A.V. Contemporary methods of correction of malocclusion with mini-implants and miniplates. Belgorod State University Scientific bulletin: Medicine, Pharmacy. 2016; 26 (247): 152—161 (In Russian). eLIBRARY ID: 28201305
  5. Ryu J.H., Park J.H., Vu Thi Thu T., Bayome M., Kim Y., Kook Y.A. Palatal bone thickness compared with cone-beam computed tomography in adolescents and adults for mini-implant placement. Am J Orthod Dentofacial Orthop. 2012; 142 (2): 207—12. PMID: 22858330
  6. Sivamurthy G., Sundari S. Stress distribution patterns at mini-implant site during retraction and intrusion—a three-dimensional finite element study. Prog Orthod. 2016; 17: 4. PMID: 26780464
  7. Paredes N., Gargoum A., Dominguez-Mompell R., Colak O., Bui J., Duong T., Giannetti M., Silva F., Brooks K., Moon W. Pattern of microimplant displacement during maxillary skeletal expander treatment: A cone-beam computed tomography study. Korean J Orthod. 2023; 53 (5): 289—297. PMID: 37666573
  8. Aleshkina O., Suetenkov D., Dydykin S., Vasil’ev Y., Paulsen F., Firsova I., Bikbaeva T., Polkovova I. Determination of sex dimorphisms of the thickness of the hard palate in adolescence using computed tomography: Pilot study. Ann Anat. 2021; 238: 151764. PMID: 34004269
  9. Kotarska M., Kucukkeles N., Lis J., Kawala B., Rumin K., Sarul M. Changes in the mandible following rapid maxillary expansion in children with Class II malocclusion: A systematic review. Diagnostics (Basel). 2022; 12 (7): 1688. PMID: 35885592
  10. Wilmes B., Ludwig B., Vasudavan S., Nienkemper M., Drescher D. The T-zone: Median vs. paramedian insertion of palatal mini-implants. J Clin Orthod. 2016; 50 (9): 543—551.

Received

June 23, 2025

Accepted

October 22, 2025

Published on

December 18, 2025