DOI:

10.37988/1811-153X_2025_3_128

Biocompatibility study of coatings obtained by atomic layer deposition on titanium implants made of various alloys

Authors

  • A.A. Dolgalev 1, Doctor of Science in Medicine, professor of the Department of General practice dentistry and pediatric dentistry
    ORCID: 0000-0002-6352-6750
  • D.Yu. Christophorando 1, 2, Doctor of Science in Medicine, professor of the Oral and maxillofacial surgery Department; head of the Maxillofacial surgery ward
    ORCID: 0000-0002-2624-7453
  • N.N. Didenko 1, head of Regenerative Medicine Lab, assistant at the Pathophysiology Department
    ORCID: 0000-0001-9734-8158
  • D.Z. Choniashvili 3, PhD in Medical Sciences, associate professor of the Therapeutic, surgical and pediatric dentistry Department, dean of the Faculty of Medicine, chief physician of Clinical and diagnostic Center
    ORCID: 0000-0003-4218-1359
  • A.K. Zelenskij 1, 4, 4th year student of the Faculty of Dentistry; director
    ORCID: 0009-0002-9728-4910
  • 1 Stavropol State Medical University, 355017, Stavropol, Russia
  • 2 Stavropol City Clinical Emergency Hospital, 355040, Stavropol, Russia
  • 3 North Ossetian State University, 362025, Vladikavkaz, Russia
  • 4 North Caucasus Research Laboratory of Medical Technologies LLC, 355035, Stavropol, Russia

Abstract

Restoration of bone tissue following trauma, congenital defects, or tumor resection remains one of the key challenges in medicine. Traditional autotransplantation methods are limited by donor material availability and the invasive nature of tissue harvesting. This has driven research into biocompatible materials that mimic bone tissue, particularly those based on titanium and its alloys. However, while pure titanium lacks sufficient mechanical strength, alloys (e.g., Ti6Al4V) may exhibit inferior biocompatibility due to aluminum and vanadium impurities. The aim of this study was to investigate the effects of nanoscale titanium dioxide (TiO2) coatings, deposited via atomic layer deposition (ALD), on the biocompatibility of titanium implants for maxillofacial surgery. Samples made of VT6 alloy (Grade5) were fabricated using selective laser sintering (SLS) and electron beam melting (EBM) techniques, followed by application of 25 nm TiO2 coatings. Elemental analysis revealed titanium oxidation (27.4% oxygen content) in SLS-produced samples, while EBM samples showed no oxidation. The TiO2 coating reduced surface concentrations of aluminum and vanadium, thereby enhancing biocompatibility. Testing with mesenchymal stem cells (MSCs) demonstrated that coated samples increased nucleic acid content in the secretome by 6—11% compared to control (Grade2 titanium) and by 22—27% compared to uncoated VT6 alloy.
Conclusions.
Additive manufacturing technologies (SLS and EBM) improve the biocompatibility of VT6 alloy (Grade5). 25 nm TiO2 coatings further enhance osseointegration properties. The ALD method effectively creates barrier layers that mitigate migration of harmful impurities.

Key words:

titanium implants, titanium dioxide, atomic layer deposition, biocompatibility, mesenchymal stem cells, additive manufacturing technologies

For Citation

[1]
Dolgalev A.A., Christophorando D.Yu., Didenko N.N., Choniashvili D.Z., Zelenskij A.K. Biocompatibility study of coatings obtained by atomic layer deposition on titanium implants made of various alloys. Clinical Dentistry (Russia).  2025; 28 (3): 128—132. DOI: 10.37988/1811-153X_2025_3_128

References

  1. Ivashkov V.Yu., Akhmatova R.R., Sobolevskiy V.A., Mudunov A.M. Possibilities of the use of an animal pattern tray for microsurgical substitution of combined top jaw defects in cancer patients. Bone and soft tissue sarcomas and tumors of the skin. 2019; 2: 40—48 (In Russian). eLIBRARY ID: 38936750
  2. Ivanov S.Yu. Current medical technologies for guided bone regeneration. Moscow: Special Publishing House for Medical Books, 2022. Pp. 129—140 (In Russian).
  3. Dolgalev A.A., Svyatoslavov D.S., Put V.A., Rzhepakovsky I.V., Eldashev D.S.A., Rabinovich A.V., Jafarov E.M., Chagarov A.A. Morphological assessment of osseointegration during replacement of mandible defect with implants that made using additive technologies. Experimental research. Medical alphabet. 2019; 5 (380): 63—68 (In Russian). eLIBRARY ID: 39195451
  4. Gaponov M.E. Technique of reconstruction of the mandible with composite bioceramic structures using additive technologies. Experimental study: master’s thesis. Moscow, 2020. 124 p. (In Russian).
  5. Shajhaliev A.I. Combined titanium endoprostheses with a nanostructured surface in the complex rehabilitation of patients with mandibular defects: dissertation abstract. Moscow, 2022. 48 p. (In Russian).
  6. Davydova T.R., Shaikhaliev A.I., Gasanov G.A., Korgoloev R.S., Usatov D.A. Impact of medical titanium implant surface on the efficiency of fibrointegration. International Dental Review. 2020; 2 (91): 50—55 (In Russian). eLIBRARY ID: 43076070
  7. Zelenskij V.I. Development of nanostructured coatings for intraosseous dental implants (experimental study): master’s thesis. Moscow, 2022. 23 p. (In Russian).

Received

November 8, 2024

Accepted

July 28, 2025

Published on

September 21, 2025