DOI:

10.37988/1811-153X_2025_3_79

Prospects of bacterial cellulose application in dentistry (review of foreign literature)

Authors

  • Yu.V. Lunitsyna 1, PhD in Medical Sciences, associate professor of the Therapeutic dentistry Department
    ORCID: 0000-0002-2442-3361
  • L.G. Dvornikova 1, PhD in Pharmacy, associate professor of the Pharmacy Department
    ORCID: 0000-0001-7951-9339
  • O.N. Mazko 1, PhD in Biology, associate professor of the Pharmacology Department
  • A.O. Shevyakina 1, postgraduate of the Therapeutic dentistry Department
    ORCID: 0009-0006-4868-8205
  • O.V. Bondarenko 1, PhD in Medical Sciences, associate professor of the Therapeutic dentistry Department
  • S.I. Tokmakova 1, Doctor of Science in Medicine, full professor of the Therapeutic dentistry Department
    ORCID: 0000-0003-0437-0079
  • 1 Altai State Medical University, 656038, Barnaul, Russia

Abstract

The article provides an overview of modern literature sources on bacterial cellulose, which, being a natural biopolymer, has unique physico-chemical properties such as high purity, excellent mechanical strength and biocompatibility, absorbent properties, which makes it in demand in various fields of medicine: as wound coatings, in tissue engineering and transplantation, etc. In dentistry, bacterial cellulose manifests itself in several ways. In periodontics, it is used to regenerate gum tissue and bone structures. In endodontics, to preserve the viability of the pulp, to create effective absorbers and sillers. In implantology, bacterial cellulose can be applied during sinus lifting surgery. It is also effective in the treatment of diseases of the oral mucosa due to its barrier and protective properties, contributing to the healing of ulcers and erosions.
Conclusion.
The article highlights the potential and prospects for the development of dental products and preparations based on bacterial cellulose.

Key words:

bacterial cellulose, biomaterial, dentistry, periodontics, endodontics, medical devices, wound coverings

For Citation

[1]
Lunitsyna Yu.V., Dvornikova L.G., Mazko O.N., Shevyakina A.O., Bondarenko O.V., Tokmakova S.I. Prospects of bacterial cellulose application in dentistry (review of foreign literature). Clinical Dentistry (Russia).  2025; 28 (3): 79—83. DOI: 10.37988/1811-153X_2025_3_79

References

  1. O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Materials Today. 2011; 14 (3): 88—95. DOI: 10.1016/S1369-7021(11)70058-X
  2. de Oliveira Barud H.G., et al. Bacterial nanocellulose in dentistry: Perspectives and challenges. Molecules. 2020; 26 (1): 49. PMID: 33374301
  3. Horue M., Cacicedo M.L., Castro G.R. New insights into bacterial cellulose materials: Production and modification strategies. International Journal of Advances in Medical Biotechnology. 2018; 1 (2): 44—49. DOI: 10.25061/2595-3931/IJAMB/2018.v1i2.20
  4. Popa L., et al. Bacterial cellulose — A remarkable polymer as a source for biomaterials tailoring. Materials (Basel). 2022; 15 (3): 1054. PMID: 35160997
  5. Choi S.M., Shin E.J. The Nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials (Basel). 2020; 10 (3): 406. PMID: 32106515
  6. Brown A.J. On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions. 1886; 49: 432—439. DOI: 10.1039/CT8864900432
  7. Ul-Islam M., Khan T., Park J.K. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers. 2012; 88 (2): 596—603. DOI: 10.1016/j.carbpol.2012.01.006
  8. Reiniati I., et al. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit Rev Biotechnol. 2017; 37 (4): 510—524. PMID: 27248159
  9. Inoue B.S., et al. Bioactive bacterial cellulose membrane with prolonged release of chlorhexidine for dental medical application. Int J Biol Macromol. 2020; 148: 1098—1108. PMID: 31917984
  10. Singh M., et al. Biodegradation studies on periodate oxidized cellulose. Biomaterials. 1982; 3 (1): 16—20. PMID: 6279192
  11. Weyell P., et al. Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr Polym. 2019; 207: 1—10. PMID: 30599988
  12. An S.J., et al. Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int J Mol Sci. 2017; 18 (11): 2236. PMID: 29068426
  13. Kadkhodazadeh M., et al. In vitro comparison of biological effects of Coe-Pak and Reso-Pac periodontal dressings. J Oral Maxillofac Res. 2017; 8 (1): e3. PMID: 28496963
  14. Baghani Z., Kadkhodazadeh M. Periodontal dressing: a review article. J Dent Res Dent Clin Dent Prospects. 2013; 7 (4): 183—91. PMID: 24578815
  15. Petelin M., et al. Effects of periodontal dressings on fibroblasts and gingival wound healing in dogs. Acta Vet Hung. 2004; 52 (1): 33—46. PMID: 15119785
  16. Alimardani Y., et al. Prospective and applications of bacterial nanocellulose in dentistry. Cellulose. 2024; 13: 7819—7839. DOI: 10.1007/s10570-024-06098-y
  17. Novaes A.B. jr, Novaes A.B. IMZ implants placed into extraction sockets in association with membrane therapy (Gengiflex) and porous hydroxyapatite: a case report. Int J Oral Maxillofac Implants. 1992; 7 (4): 536—40. PMID: 1299651
  18. Novaes A.B. jr, Novaes A.B. Bone formation over a TiAl6V4 (IMZ) implant placed into an extraction socket in association with membrane therapy (Gengiflex). Clin Oral Implants Res. 1993; 4 (2): 106—10. PMID: 8218743
  19. Luz E.P.C.G., et al. Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020; 116: 111175. PMID: 32806235
  20. Anitasari S., et al. New insight of scaffold based on hydroxyapatite (HAp)/bacteria’s nanocellulose (BN) for dental tissue engineering. Eur J Dent. 2024; 18 (3): 891—897. PMID: 37995727
  21. Klinthoopthamrong N., et al. Bacterial cellulose membrane conjugated with plant-derived osteopontin: Preparation and its potential for bone tissue regeneration. Int J Biol Macromol. 2020; 149: 51—59. PMID: 31981668
  22. Kraisuriyawong P., et al. Functionalizable bacterial cellulose composite membrane for guided tissue regeneration. Int J Biol Macromol. 2024; 268 (Pt 1): 131655. PMID: 38636763
  23. Lavoine N., et al. Controlled release of chlorhexidine digluconate using β-cyclodextrin and microfibrillated cellulose. Colloids Surf B Biointerfaces. 2014; 121: 196—205. PMID: 24984267
  24. Krasowski G., et al. Potential of novel bacterial cellulose dressings chemisorbed with antiseptics for the treatment of oral biofilm infections. Applied Sciences. 2019; 9 (24): 5321. DOI: 10.3390/app9245321
  25. Chiaoprakobkij N., et al. Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film. J Biomater Sci Polym Ed. 2019; 30 (11): 961—982. PMID: 31043124
  26. Tovar-Carrillo K.L., et al. Antibacterial properties of grape seed extract — enriched cellulose hydrogels for potential dental application: In vitro assay, cytocompatibility, and biocompatibility. Gels. 2024; 10 (9): 606. PMID: 39330208
  27. Cömert Kiliç S., et al. Dispersed bacterial cellulose (DBC) alone graft material and adding DBC or the boric acid-absorbed DBC to xenograft increases the new bone formation during rabbit maxillary sinus augmentation- a pilot study. J Stomatol Oral Maxillofac Surg. 2025; 102321 (Online ahead of print). PMID: 40158658
  28. Koike T., et al. Efficacy of bacterial cellulose as a carrier of BMP-2 for bone regeneration in a rabbit frontal sinus model. Materials (Basel). 2019; 12 (15): 2489. PMID: 31390730
  29. Lee J.M., et al. The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg. 2013; 139 (6): 629—35. PMID: 23787423
  30. Cañas-Gutiérrez A., et al. Bacterial cellulose: a biomaterial with high potential in dental and oral applications. Cellulose. 2020; 17: 9737—9754. DOI: 10.1007/s10570-020-03456-4
  31. Yoshino A., et al. Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater. 2013; 9 (4): 6116—22. PMID: 23268234
  32. Jinga S.I., et al. Biocellulose nanowhiskers cement composites for endodontic use. Digest Journal of Nanomaterials and Biostructures. 2014; 9 (2): 543—550.
  33. Voicu G., et al. Improvement of silicate cement properties with bacterial cellulose powder addition for applications in dentistry. Carbohydr Polym. 2017; 174: 160—170. PMID: 28821055
  34. Costa L.M., et al. Novel otoliths/bacterial cellulose nanocomposites as a potential natural product for direct dental pulp capping. Journal of Biomaterials and Tissue Engineering. 2012; 2: 48—53. DOI: 10.1166/jbt.2012.1031
  35. Carvalho J.P.F., et al. Nanocellulose-based patches loaded with hyaluronic acid and diclofenac towards aphthous stomatitis treatment. Nanomaterials (Basel). 2020; 10 (4): 628. PMID: 32231070
  36. Singh J., Steele T.W.J., Lim S. Bacterial cellulose adhesive patches designed for soft mucosal interfaces. Biomater Adv. 2023; 144: 213174. PMID: 36428212

Received

May 22, 2025

Accepted

August 25, 2025

Published on

September 21, 2025