DOI:

10.37988/1811-153X_2024_1_12

The effectiveness of the Mucosept for the treatment of radiotherapy-induced oral mucositis in head and neck cancer patients: A multicenter randomized controlled trial

Authors

  • A.P. Varukha 1, assistant at the Dental care organization, management, and prevention of dental diseases Department
    ORCID ID: 0000-0002-7676-1557
  • K.G. Karakov 1, PhD in Medical Sciences, full professor of the Therapeutic dentistry Department
    ORCID ID: 0000-0001-9012-4784
  • M.Sh. Mustafaev 2, PhD in Medical Sciences, full professor, director of the Institute of dentistry and maxillofacial surgery
    ORCID ID: 0000-0002-4042-9421
  • D.V. Shortanova 2, assistant at the Institute of dentistry and maxillofacial surgery
    ORCID ID: 0009-0003-1994-102X
  • A.V. Em 1, PhD in Medical Sciences, associate professor of the Dental care organization, management, and prevention of dental diseases Department
    ORCID ID: 0000-0001-8590-5279
  • F.R. Batyrbekova 2, PhD in Medical Sciences, associate professor, deputy director for academic affairs of the Institute of dentistry and maxillofacial surgery
    ORCID ID: 0009-0000-2642-1610
  • Ya.N. Kharakh 3, PhD in Medical Sciences, associate professor of the Digital dentistry Department
    ORCID ID: 0000-0001-7181-8211
  • S.D. Arutyunov 3, PhD in Medical Sciences, full professor of the Digital dentistry Department
    ORCID ID: 0000-0001-6512-8724
  • 1 Stavropol State Medical University, 355017, Stavropol, Russia
  • 2 Kabardino-Balkarian State University, 360004, Nalchik, Russia
  • 3 Russian University of Medicine, 127006, Moscow, Russia

Abstract

Oral mucositis (OM) is the most common complication of oncologic therapy in patients with lesions in the head and neck region. The progression of OM is accompanied by painful symptoms leading to deterioration of psycho-emotional state and reduction of quality of life. OM induced by radiation therapy is especially severe for cancer patients. In addition to the basic oral care we have developed phytocomposition Mucosept for mouthwash.
Materials and methods. Patients of the control group (n=21) used only 5% sodium bicarbonate solution for rinsing. Patients of the main group (n=21) additionally used Mucosept infusion. Quality of life was studied by EORTC QLQ-HN43 questionnaire at the beginning of the study and after 1 month.
Results. The main group showed statistically significant improvement of such questionnaire indicators as “Pain in the mouth”, “Swallowing”, “Xerostomia and saliva viscosity” and “Speech” (p<0,05).
Conclusion. Taking into account the limitations of the study, the positive effect of the use of phytocomposition Mucosept on the quality of life of cancer patients with head and neck lesions and concomitant complication in the form of OM induced by radiation therapy was determined.

Key words:

head and neck neoplasms, mouthwashes, mucositis, phytotherapy, plant preparations, quality of life, radiation injuries

For Citation

[1]
Varukha A.P., Karakov K.G., Mustafaev M.Sh., Shortanova D.V., Em A.V., Batyrbekova F.R., Kharakh Ya.N., Arutyunov S.D. The effectiveness of the Mucosept for the treatment of radiotherapy-induced oral mucositis in head and neck cancer patients: A multicenter randomized controlled trial. Clinical Dentistry (Russia).  2024; 27 (1): 12—19. DOI: 10.37988/1811-153X_2024_1_12

Introduction

Oral mucositis (OM) is one of the earliest and most common consequences of chemotherapy and radiotherapy in patients with cancer [1]. Often, the course of OM is accompanied by painful symptoms that disrupt the processes of sleep, eating, verbal and social communication, which leads to a deterioration of the psycho-emotional state, a decrease in the quality of life (QOL) [2, 3], as well as an extremely undesirable suspension of basic cancer therapy [4, 5].

Despite the complexity of the etiological and pathogenetic mechanisms of the OM development, the probability and nature of its course is largely determined by the type of cancer therapy. According to S.T. Sonis, chemotherapy-induced OM is characterized by a faster and shorter period of the disease (up to two weeks) in comparison with the radiotherapy-induced OM the duration of which can reach five weeks (when receiving a dose of 2 Gy daily) [6, 7]. In this connection, head and neck cancer patients undergoing radiotherapy are more vulnerable to the occurrence of OM with a severe course (in 65% of cases) [8, 9]. The condition of such patients is worsened by changes in the composition and ratio of oral microbiota, which are assigned to be the etiological factors of the OM. However, in the scientific literature there is no consolidated opinion regarding this aspect [10]. Nevertheless, it is known that bacterial colonization of ulcers contributes to increased severity of OM and delayed healing [11]. Also, changes in the composition and functional behavior of oral biofilms can induce local or even systemic infections and diseases [12—16]. In this connection, measures aimed at the prevention and treatment of diseases induced by cancer therapy through oral microbiota normalization are of particular importance [17].

Basic oral care (BOC) is the primary recommendation for patients of this category. The BOC includes a complex of measures: patient education (including individual oral hygiene training), professional oral care, as well as the selection and prescription of oral care agents. Oral care agents are represented by a wide variety: from simple and affordable substances (sodium bicarbonate, chlorhexidine, natural compositions etc.) to medicines (for example, benzidamine hydrochloride) or their combinations [18]. Such diversity of agents and the absence of a specific oral care protocol is a consequence of insufficient evidence of effectiveness or intolerance of components [19, 20].

Thus, the question of finding an agent with analgesic, antiseptic and anti-inflammatory effects, capable of modulating the oral microbiota and contributing to the repair of damaged soft tissues remains an urgent objective in helping cancer patients with OM.

A natural agent mouthwash “Mucocept” (Patent RU No. 2810839, effective from 31.01.2023) is proposed for the prevention and treatment of OM induced by chemotherapy and/or radiotherapy for which microbiological efficacy has been determined [21]. Phytocomposite “Mucosept” is a sachet powder with crushed components mixed in equal proportions (10 g each): Achillea millefolium (herba), Acorus calamus (radix), Arctium lappa (radix), Betula pendula (folium), Bidens pilosa (herba), Calendula officinalis (flos), Chelidonium majus (herba), Epilobium angustifolium (folium), Glycyrrhiza glabra (radix), Inonotus obliquus (fungus), Matricaria recutita (flos), Mentha spicata (herba), Plantago major (folium), Tanacetum parthenium (flos), Vaccinium vitis-idaea (folium).

The aim of the study was to assess the effect of the “Mucosept” on head and neck cancer patients’ quality of life with manifestations of radiotherapy-induced oral mucositis.

Materials and methods

General study design

Null hypothesis was formulated as: the quality of life of head and neck cancer patients using “Mucosept” does not differ from the patients who do not use it. Null hypothesis testing involved a comparative analysis of various aspects of quality of life in head and neck cancer patients who were using “Mucosept” (experimental group) with patients who were not using it (control group).

Criteria for inclusion, non-inclusion and exclusion of patients in the study were compiled to ensure the homogeneity of the sample size. The control measurements timing was established in accordance with the patients’ baseline (T0) and after their one-month follow-up (T1). The T0 data was intended to verify the study groups' initial homogeneity and the T1 data was intended to verify the null hypothesis. Informed Consent Statement was obtained prior to the patients’ inclusion in the study.

Dental measures in the control group corresponded to the basic oral care recommendations received during their comprehensive rehabilitation. The patients included in the experimental group also followed the BOС recommendations and in addition received the phytocomposite “Mucosept”.

Calculation of sample size

In accordance with the study design, we assumed the use of the t-test method (differences between two independent samples) to test the null hypothesis, as well as the homogeneity of sample size at the T0 study stage. The sample size was calculated in the G*Power program (Heinrich Heine Universität, Dusseldorf, Germany) where the following parameters were set: 0.05 (significance, α); 0.80 (power, 1−β); 0.80 (effect size, Cohen’s d). Based on this, the required sample size corresponded to 42 patients (21 patients in each group).

Study group formation

The following requirements were determined for the patients’ inclusion in the study: over 18 years old; diagnosed head and neck cancer; oral mucositis of the 3rd grade (WHO scale for oral mucositis [22]); undergoing radiotherapy; ECOG Performance Status Scale grade 0 or 1 [23].

The non-inclusion criteria in the study were: the presence of indications or the use of removable dentures; systemic diseases in the stage of exacerbation or decompensation; mental or psychogenic diseases in the medical history; cancer recurrence; allergic history; radical surgical interventions; participation in other studies; synchronous or metachronous malignant neoplasm; prescribed treatment for oral mucositis other than sodium bicarbonate 5%.

Patients were distributed randomly in the ratio of 1:1.

Quality of life measurement

The quality of life was assessed using the EORTC QLQ-HN43 questionnaire which differs from the previous version (QLQ-HN35) by improved psychometric properties [24]. The official Russian version of the questionnaire, as well as instructions for results calculation were provided by the developers (EORTC AISBL, Brussels, Belgium) upon request for this study.

The questionnaire was converted to digital format with the possibility of access via the web-interface. The first data collection (T0) was carried out in the presence of researchers who provided technical advice on using the web-interface in case of difficulties. The second data collection (T1) involved remote communication.

Statistical analysis

Considering the insignificance of cultural and linguistic differences among the populations in the research centers areas, as well as the acceptable robustness of EORTC QLQ-HN, a separate statistical analysis of data with following meta-analysis from each center was not necessary [24, 25].

Independent-samples t-test was assumed to be the main statistical criterion for assessing the statistically significant differences. The obtained data were preliminarily checked for the possibility of their processing with a parametric criterion, for which an equal variation test (Levene's test) was performed. In the case of variance inequality (p<0.05), the choice of a nonparametric statistical criterion (Mann—Whitney U test, Welch's t-test or Yuen—Welch's test) was assumed.

Results

The study included 42 patients (19 men and 23 women, average age 56.43±7.32 years).

The first assessment of QOL was performed at the control period T0 stage, after the formation of a sample size and randomization of patients into study groups. The variances of QOL at this stage, in the study groups for each scale were determined to be equivalent (p>0.05). Statistically significant intergroup differences in scale indicators were not revealed (t-test, p>0.05; the details of the results are presented in Table).

At the second stage of the QOL control assessment (T1), after 1 month patients' follow-up, there were no cases of exclusion (n=42). According to the results of the intergroup statistical analysis, significant differences in following scales were revealed: Pain in the mouth (PA), Swallowing (SW), Dry mouth and sticky saliva (DR) and Speech (SP) (p<0.05).

 

Scale Baseline (Т0) After 1 month (T1)
Mucosept Control p Mucosept Control p
Pain in the mouth (PA) 55.16±9.67 58.33±15.81 0.437 14.68±17.46 24.60±9.67 0.028
Swallowing (SW) 56.35±14.65 59.92±22.46 0.545 15.08±17.20 27.78±11.28 0.007
Problems with teeth (TE) 48.68±15.11 49.21±19.43 0.922 22.22±16.10 27.78±14.49 0.247
Dry mouth and sticky saliva (DR) 67.46±17.85 65.08±22.30 0.705 34.13±18.62 47.62±14.23 0.012
Problems with senses (SE) 66.67±16.67 61.11±23.17 0.378 30.95±20.61 29.36±13.85 0.771
Speech (SP) 49.21±12.56 47.94±15.72 0.774 18.41±18.73 29.21±12.38 0.033
Body image (BI) 52.91±12.13 49.21±10.29 0.292 45.50±28.31 43.39±16.07 0.767
Social eating (SO) 49.99±16.03 59.92±19.83 0.082 32.54±17.06 40.08±13.08 0.116
Sexuality (SX) 42.06±17.97 47.62±26.50 0.431 48.41±34.12 45.24±15.04 0.698
Problems with shoulder (SH) 26.19±21.45 24.60±20.83 0.809 19.04±19.21 21.43±16.79 0.671
Skin problems (SK) 44.97±22.36 44.97±29.91 1.000 22.22±21.37 23.81±15.03 0.782
Fear of progression (ANX) 64.28±17.70 66.67±24.72 0.722 56.35±37.07 61.11±19.95 0.607
Problems with opening the mouth (OM) 33.33±14.91 30.16±17.97 0.537 38.09±11.95 34.92±7.28 0.305
Coughing (CO) 28.57±21.82 38.09±28.45 0.231 33.33±14.91 39.68±22.66 0.290
Social contact (SC) 46.03±24.67 47.62±19.92 0.820 31.74±19.65 39.68±13.42 0.134
Swelling in the neck (SN) 20.63±16.59 19.05±19.92 0.781 23.81±21.45 19.05±16.90 0.429
Weight loss (WL) 28.57±21.82 22.22±16.09 0.290 31.75±32.45 38.09±19.11 0.444
Problems with wound healing (WO) 26.98±20.05 23.81±21.45 0.623 31.75±24.67 28.57±15.94 0.623
Neurological problems (NE) 19.05±16.90 22.22±21.94 0.602 30.16±20.83 25.40±20.83 0.463

Discussion

The null hypothesis assumed that there were no statistically significant differences between the study groups in the level of quality of life, which includes the most important aspects (scales) for cancer patients. Statistical differences found in the scales of PA, SW, DR and SP allow us to reject the null hypothesis. It is important to note that these scales are closely related to the oral health, and therefore, it can be assumed that changes in these scales are impacted by a local factor.

Thus, F. Mohammadi et al. determined that the use of zinc chloride and sodium bicarbonate can improve the quality of life of cancer patients undergoing chemotherapy [26]. Despite the fact that the sample size included patients undergoing only radiotherapy, in the control group there was also an improvement in the quality of life indicators, especially with respect to the scales of PA, SW, TE, DR, SE and SP. However, since the issue of intragroup changes in QOL was not included in the objectives of the current study, the revealed trend can only be used as a hypothesis for further study of the BOC impact on the quality of life of cancer patients undergoing only radiotherapy.

Thus, it can be concluded that within the framework of this study, the most significant factor determining the outcome of quality of life measurement is assigned to oral care agents, and the revealed statistical differences between the groups can be explained by the use of “Mucosept”.

A comparison of indicators by scales with a statistical difference (T1) corresponds to a higher level of quality of life in the experimental group, in which the patients' BOC was supplemented with phytocomposite. It is worth noting that the study design did not assume the phytocomposite effectiveness assessment in the case of its isolated use, in consequence of which other results may be obtained due to the lack of possible synergy between “Mucosept” and sodium bicarbonate. The study of various BOC agents’ interaction is an interesting question, in particular, in the context of the continuation of this work.

The revealed best efficiency in the experimental group, in our opinion, is due to the multicomponent nature of “Mucosept”, which provided multidirectional actions of each component, that most explains the obtained results.

The differences in the PA and SW scales are consistent with the data of other researchers (including clinical ones) regarding: Matricaria recutita [27, 28], Plantago major [29], as well as Tanacetum parthenium [30], in which the effectiveness of OM symptoms reduction in cancer patients is determined due their analgesic properties. The obtained results are also due to the anti-inflammatory and regenerative properties of Epilobium angustifolium, owing to the activation of inhibition of neutrophil elastase [31, 32], the excess of which leads to tissue damage and aggravation of the OM severity [33].

Based on the literature data, it can be concluded that the improvement of PA, SW and DR indicators is primarily due to antioxidant properties of Achillea millefolium [34], Acorus calamus [35, 36], Arctium lappa [37], Betula pendula [38], Bidens pilosa [39], Calendula officinalis [40], Chelidonium majus [41], Glycyrrhiza glabra [42], Inonotus obliquus [43, 44], Mentha spicata [45] and Vaccinium vitis-idaea [46].

Improved speech (SP) in both study groups may be a consequence of patients' adaptation. However, a statistically significant difference in SP indicators in the experimental group shows a positive effect of “Mucosept”. In our opinion, the obtained results may partly be due to the strong antioxidant properties of the phytocomposition, that made it possible to reduce oxidative stress, which is of great importance in the development of radio-induced oral mucositis and salivary hypofunction [7, 47]. Oxidative stress reduction could contribute to normal salivation, thereby improving the quality of speech [48, 49].

Despite the fact that problems with teeth (TE scale) are also directly related to the oral cavity and its condition, the lack of statistical differences between the groups, in our opinion, is due to insufficient time for accumulation and manifestation of positive or negative effects. It should be borne in mind that the period from the measures start within the framework of the BOC (patient education, professional oral care) to the patients’ inclusion in the study did not exceed 1 month.

Taste and smell perversions are associated with damage to any structure of the nervous system (central nervous system, receptors, etc.), as a result of radiotherapy [50]. In this case, the BOC cannot protect or restore the disrupted functions, which explains the lack of statistical differences in this scale (SE scale).

Problems with opening the mouth in patients undergoing cancer therapy are associated with the accumulation of radiation exposure and the development of radiation-induced trismus [51]. This complication is delayed [48, 52] and slowly developing, and its manifestation occurs during the post-radiation therapy period [53]. This fact explains the absence of an intergroup difference in OM-scale, since at the time of the control measurement (T1) the accumulation of radiation exposure and the time from the start of radiotherapy was insufficient for the manifestation of noticeable symptoms.

S. Singer et al. [24] determined the relatively limited reliability of the SC and SN scales during repeated measurement (test-retest) for a period of one week. We could not find other studies evaluating the reliability of SC and SN for a longer period between measurements, and therefore, the interpretation of the obtained results on these scales may be incorrect.

From our point of view, the state of oral health in relation to the BI, SO, ANX, SX, WL scales does not play a priority role, since the indicators of these scales are determined by a variety of other factors, among which it is difficult to accurately determine the contribution of the BOC agents' impact. B.A. Rhoten et al. identify two main groups of factors that determine the self-perception of the body image — disfigurement (for example, a change in the face configuration) and dysfunction, which are the result of not only local complications, such as impaired verbal communication, food chewing, but also their general condition (weakness, fatigue, etc.) [54]. J.M. Patterson et al. concluded that age and social status play a decisive role in SO indicators [55]. The anxiety level is determined not only by physiological, but also by psychosocial problems [56]. Thus, the determination of the local BOC agents' effect is a separate research issue that requires the formation of more specific criteria for the patients' inclusion in order to exclude interfering factors.

The informativeness of SH, SK, CO, WO, NE indicators does not allow to correctly judge the effectiveness of the phytocomposite, since the issues of these scales do not affect the area of the BOC agents' action. In our opinion, any significant differences in the indicators of these scales could be prerequisites for considering systemic side effects, which, however, was not revealed during the study.

The limitation of this study is the short observation period, which does not allow us to judge the long-term effects of the phytocomposite use. In our study, we did not take into account the cumulative radiation dose and radiotherapy regimen at the time of patients' inclusion in the study, which might be a factor reducing the homogeneity of the sample size and the power of the study. When including patients in the studies, we also did not take into account the patients' social status, which might have an impact on the success of individual oral hygiene training. When including patients in the study, we did not detail the patients' oral health status according to hygienic parameters, the presence and condition of fixed dentures, fillings, which may also be the reason for a decrease in the power of the study. The presented study is associated with a large effect of the sample size, therefore, in order to increase the level of evidence of the obtained results, it is necessary to conduct a similar study with a large sample size.

Conclusions

Taking into account the limitations of the study, we can conclude about the positive effect of the phytocomposition “Mucosept” on the quality of life of head and neck cancer patients with concomitant complication in the form of oral mucositis induced by radiation therapy.

References

  1. Elting L.S., Keefe D.M., Sonis S.T., Garden A.S., Spijkervet F.K., Barasch A., Tishler R.B., Canty T.P., Kudrimoti M.K., Vera-Llonch M., Burden of Illness Head and Neck Writing Committee Patient-reported measurements of oral mucositis in head and neck cancer patients treated with radiotherapy with or without chemotherapy: demonstration of increased frequency, severity, resistance to palliation, and impact on quality of life. Cancer. 2008; 113 (10): 2704—13. PMID: 18973181
  2. Cheng K.K., Lee V., Li C.H., Yuen H.L., Epstein J.B. Oral mucositis in pediatric and adolescent patients undergoing chemotherapy: the impact of symptoms on quality of life. Support Care Cancer. 2012; 20 (10): 2335—42. PMID: 22167295
  3. Tsvetkova L.A., Arutyunov S.D., Petrova L.V., Perlamutrov Yu.N. Diseases of the mucous membrane of the mouth and lips. Moscow: Medpress-Inform, 2005. 208 p. (In Russian).
  4. Chang Y.L., Lee S.C., Liao C.T., Wang C.H., Lin Y.F., Chen S.C. Factors impacting on discordance with treatment plan in head and neck cancer patients: a retrospective, population-based cohort study. Support Care Cancer. 2020; 28 (2): 951—958. PMID: 31177393
  5. Bergamaschi L., Vincini M.G., Zaffaroni M., Pepa M., Angelicone I., Astone A., Bergamini C., Buonopane S., Conte M., De Rosa N., Deantoni C., Dell’Oca I., Di Gennaro D., Di Muzio N., Osti M.F., Federico M., Ferini G., Franzese C., Gatti M., Grillo A., Iorio V., Manzo R., Marmiroli L., Martin G., Mazzuca F., Molinaro M.A., Muto M., Pacelli R., Pepe A., Perillo A., Russo D., Salerno F., Spadaro P., Viola A., Iorio G.C., Muto P., Ricardi U., Alterio D. Management of radiation-induced oral mucositis in head and neck cancer patients: a real-life survey among 25 Italian radiation oncology centers. Support Care Cancer. 2023; 32 (1): 38. PMID: 38110572
  6. Sonis S.T. A biological approach to mucositis. J Support Oncol. 2004; 2 (1): 21—32; discussion 35—6. PMID: 15330370
  7. Sonis S.T. A hypothesis for the pathogenesis of radiation-induced oral mucositis: when biological challenges exceed physiologic protective mechanisms. Implications for pharmacological prevention and treatment. Support Care Cancer. 2021; 29 (9): 4939—4947. PMID: 33712912
  8. Berger K., Schopohl D., Bollig A., Strobach D., Rieger C., Rublee D., Ostermann H. Burden of Oral Mucositis: A Systematic Review and Implications for Future Research. Oncol Res Treat. 2018; 41 (6): 399—405. PMID: 29734184
  9. Maria O.M., Eliopoulos N., Muanza T. Radiation-induced oral mucositis. Front Oncol. 2017; 7: 89. PMID: 28589080
  10. Vanhoecke B., De Ryck T., Stringer A., Van de Wiele T., Keefe D. Microbiota and their role in the pathogenesis of oral mucositis. Oral Dis. 2015; 21 (1): 17—30. PMID: 24456144
  11. Sonis S.T. Precision medicine for risk prediction of oral complications of cancer therapy — The example of oral mucositis in patients receiving radiation therapy for cancers of the head and neck. Front Oral Health. 2022; 3: 917860. PMID: 36060117
  12. Arutunov S.D., Mayev I.V., Romanenko N.V., Surmayev E.V. Features of a condition of periodontal tissues at the patients with a peptic ulcer of a duodenal intestine, associated with Helicobacter pylori. Parodontologiya. 2005; 3 (36): 30—33 (In Russian). eLIBRARY ID: 9483519
  13. Balmasova I.P., Olekhnovich E.I., Klimina K.M., Korenkova A.A., Vakhitova M.T., Babaev E.A., Ovchinnikova L.A., Lomakin Y.A., Smirnov I.V., Tsarev V.N., Mkrtumyan A.M., Belogurov A.A. Jr, Gabibov A.G., Ilina E.N., Arutyunov S.D. Drift of the subgingival periodontal microbiome during chronic periodontitis in type 2 diabetes mellitus patients. Pathogens. 2021; 10 (5): 504. PMID: 33922308
  14. Thomas C., Minty M., Vinel A., Canceill T., Loubières P., Burcelin R., Kaddech M., Blasco-Baque V., Laurencin-Dalicieux S. Oral microbiota: A major player in the diagnosis of systemic diseases. Diagnostics (Basel). 2021; 11 (8): 1376. PMID: 34441309
  15. Mougeot J.C., Stevens C.B., Morton D.S., Brennan M.T., Mougeot F.B. Oral microbiome and cancer therapy-induced oral mucositis. J Natl Cancer Inst Monogr. 2019; 2019 (53): lgz002. PMID: 31425594
  16. Yumoto H., Hirota K., Hirao K., Ninomiya M., Murakami K., Fujii H., Miyake Y. The pathogenic factors from oral Streptococci for systemic diseases. Int J Mol Sci. 2019; 20 (18): 4571. PMID: 31540175
  17. Hong C.H.L., Gueiros L.A., Fulton J.S., Cheng K.K.F., Kandwal A., Galiti D., Fall-Dickson J.M., Johansen J., Ameringer S., Kataoka T., Weikel D., Eilers J., Ranna V., Vaddi A., Lalla R.V., Bossi P., Elad S., Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society for Oral Oncology (MASCC/ISOO) Systematic review of basic oral care for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer. 2019; 27 (10): 3949—3967. PMID: 31286232
  18. Elad S., Cheng K.K.F., Lalla R.V., Yarom N., Hong C., Logan R.M., Bowen J., Gibson R., Saunders D.P., Zadik Y., Ariyawardana A., Correa M.E., Ranna V., Bossi P., Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2020; 126 (19): 4423—4431. PMID: 32786044
  19. Davy C., Heathcote S. A systematic review of interventions to mitigate radiotherapy-induced oral mucositis in head and neck cancer patients. Support Care Cancer. 2021; 29 (4): 2187—2202. PMID: 32889582
  20. Di Fede O., Canepa F., Maniscalco L., Tozzo P., Matranga D., Giuliana G. Prevention and the treatment of oral mucositis: the efficacy of sodium bicarbonate vs other agents: a systematic review. BMC Oral Health. 2023; 23 (1): 4. PMID: 36597048
  21. Vazhenin A.V., Kiparisova D.G., Kiparisov Yu.S., Podporin M.S., Ponomareva A.G., Tsarev V.N., Arutyunov S.D. Experimental substantiation of the effectiveness of the use of a new phytocomposition in the prevention and dental examination of cancer patients with complications of chemotherapy and radiation therapy. Clinical Dentistry (Russia). 2023; 4: 80—90 (In Russian). eLIBRARY ID: 59397995
  22. Villa A., Vollemans M., De Moraes A., Sonis S. Concordance of the WHO, RTOG, and CTCAE v4.0 grading scales for the evaluation of oral mucositis associated with chemoradiation therapy for the treatment of oral and oropharyngeal cancers. Support Care Cancer. 2021; 29 (10): 6061—6068. PMID: 33788003
  23. Oken M.M., Creech R.H., Tormey D.C., Horton J., Davis T.E., McFadden E.T., Carbone P.P. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol. 1982; 5 (6): 649—55. PMID: 7165009
  24. Singer S., Amdal C.D., Hammerlid E., Tomaszewska I.M., Castro Silva J., Mehanna H., Santos M., Inhestern J., Brannan C., Yarom N., Fullerton A., Pinto M., Arraras J.I., Kiyota N., Bonomo P., Sherman A.C., Baumann I., Galalae R., Fernandez Gonzalez L., Nicolatou-Galitis O., Abdel-Hafeez Z., Raber-Durlacher J., Schmalz C., Zotti P., Boehm A., Hofmeister D., Krejovic Trivic S., Loo S., Chie W.C., Bjordal K., Brokstad Herlofson B., Grégoire V., Licitra L., EORTC Quality of Life and the EORTC Head and Neck Cancer Groups International validation of the revised European Organisation for Research and Treatment of Cancer Head and Neck Cancer Module, the EORTC QLQ-HN43: Phase IV. Head Neck. 2019; 41 (6): 1725—1737. PMID: 30636188
  25. Parkar S., Sharma A. Validation of European Organization for Research and Treatment of Cancer head and neck cancer quality of life questionnaire (EORTC QLQ-H&N35) across languages: A systematic review. Indian J Otolaryngol Head Neck Surg. 2022; 74 (Suppl 3): 6100—6107. PMID: 36742587
  26. Mohammadi F., Oshvandi K., Kamallan S.R., Khazaei S., Ranjbar H., Ahmadi-Motamayel F., Gillespie M., Jenabi E., Vafaei S.Y. Effectiveness of sodium bicarbonate and zinc chloride mouthwashes in the treatment of oral mucositis and quality of life in patients with cancer under chemotherapy. Nurs Open. 2022; 9 (3): 1602—1611. PMID: 35170247
  27. de Lima Dantas J.B., Freire T.F.C., Sanches A.C.B., Julião E.L.D., Medrado A.R.A.P., Martins G.B. Action of Matricaria recutita (chamomile) in the management of radiochemotherapy oral mucositis: A systematic review. Phytother Res. 2022; 36 (3): 1115—1125. PMID: 35129844
  28. Vieira J. da S., Barros A.M.I., de Almeida H.C.R., Sette-de-Souza P.H., Sobral A.P.V., da Silveira M.M.F. Efficacy of Matricaria recutita (Chamomile) in the prevention and/or treatment of oral mucositis: Umbrella review. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2023; 136: e36. DOI: 10.1016/j.oooo.2023.03.086.
  29. Soltani G.M., Hemati S., Sarvizadeh M., Kamalinejad M., Tafazoli V., Latifi S.A. Efficacy of the plantago major L. syrup on radiation induced oral mucositis in head and neck cancer patients: A randomized, double blind, placebo-controlled clinical trial. Complement Ther Med. 2020; 51: 102397. PMID: 32507421
  30. Di Cesare Mannelli L., Tenci B., Zanardelli M., Maidecchi A., Lugli A., Mattoli L., Ghelardini C. Widespread pain reliever profile of a flower extract of Tanacetum parthenium. Phytomedicine. 2015; 22 (7—8): 752—8. PMID: 26141762
  31. Jakimiuk K., Gesek J., Atanasov A.G., Tomczyk M. Flavonoids as inhibitors of human neutrophil elastase. J Enzyme Inhib Med Chem. 2021; 36 (1): 1016—1028. PMID: 33980119
  32. Karakaya S., Süntar I., Yakinci O.F., Sytar O., Ceribasi S., Dursunoglu B., Ozbek H., Guvenalp Z. In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process. J Ethnopharmacol. 2020; 262: 113207. PMID: 32730870
  33. Saul-McBeth J., Dillon J., Lee A., Launder D., Kratch J.M., Abutaha E., Williamson A.A., Schroering A.G., Michalski G., Biswas P., Conti S.R. 3rd, Shetty A.C., McCracken C., Bruno V.M., Parsai E.I., Conti H.R. Tissue damage in radiation-induced oral mucositis is mitigated by IL-17 receptor signaling. Front Immunol. 2021; 12: 687627. PMID: 34220843
  34. Strzępek-Gomółka M., Gaweł-Bęben K., Kukula-Koch W. Achillea species as sources of active phytochemicals for dermatological and cosmetic applications. Oxid Med Cell Longev. 2021; 2021: 6643827. PMID: 33833853
  35. Das B.K., Swamy A.V., Koti B.C., Gadad P.C. Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon. 2019; 5 (5): e01585. PMID: 31193009
  36. Schönknecht K., Surdacka A., Rudenko L. Effectiveness of composed herbal extract in the treatment of gingivitis and oral and pharyngeal mucosa — review of studies. Wiad Lek. 2021; 74 (7): 1737—1749. PMID: 34459780
  37. Yosri N., Alsharif S.M., Xiao J., Musharraf S.G., Zhao C., Saeed A., Gao R., Said N.S., Di Minno A., Daglia M., Guo Z., Khalifa S.A.M., El-Seedi H.R. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed Pharmacother. 2023; 158: 114104. PMID: 36516694
  38. Rastogi S., Pandey M.M., Kumar Singh Rawat A. Medicinal plants of the genus Betula —traditional uses and a phytochemical-pharmacological review. J Ethnopharmacol. 2015; 159: 62—83. PMID: 25449458
  39. Rodríguez-Mesa X.M., Contreras Bolaños L.A., Mejía A., Pombo L.M., Modesti Costa G., Santander González S.P. Immunomodulatory properties of natural extracts and compounds derived from Bidens pilosa L.: Literature review. Pharmaceutics. 2023; 15 (5): 1491. PMID: 37242733
  40. Babaee N., Moslemi D., Khalilpour M., Vejdani F., Moghadamnia Y., Bijani A., Baradaran M., Kazemi M.T., Khalilpour A., Pouramir M., Moghadamnia A.A. Antioxidant capacity of calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study. Daru. 2013; 21 (1): 18. PMID: 23497687
  41. Terzic M., Fayez S., Fahmy N.M., Eldahshan O.A., Uba A.I., Ponniya S.K.M., Selvi S., Nilofar, Koyuncu I., Yüksekdağ Ö., Zengin G. Chemical characterization of three different extracts obtained from Chelidonium majus L. (Greater celandine) with insights into their in vitro, in silico and network pharmacological properties. Fitoterapia. 2024; 174: 105835 (Online ahead of print). PMID: 38301936
  42. Pastorino G., Cornara L., Soares S., Rodrigues F., Oliveira M.B.P.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res. 2018; 32 (12): 2323—2339. PMID: 30117204
  43. Duru K.C., Kovaleva E.G., Danilova I.G., van der Bijl P. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother Res. 2019; 33 (8): 1966—1980. PMID: 31209936
  44. Szychowski K.A., Skóra B., Pomianek T., Gmiński J. Inonotus obliquus — from folk medicine to clinical use. J Tradit Complement Med. 2021; 11 (4): 293—302. PMID: 34195023
  45. Tafrihi M., Imran M., Tufail T., Gondal T.A., Caruso G., Sharma S., Sharma R., Atanassova M., Atanassov L., Valere Tsouh Fokou P., Pezzani R. The wonderful activities of the genus Mentha: not only antioxidant properties. Molecules. 2021; 26 (4): 1118. PMID: 33672486
  46. Pärnänen P., Lähteenmäki H., Tervahartiala T., Räisänen I.T., Sorsa T. Lingonberries —general and oral effects on the microbiome and inflammation. Nutrients. 2021; 13 (11): 3738. PMID: 34835994
  47. Liu Z., Dong L., Zheng Z., Liu S., Gong S., Meng L., Xin Y., Jiang X. Mechanism, prevention, and treatment of radiation-induced salivary gland injury related to oxidative stress. Antioxidants (Basel). 2021; 10 (11): 1666. PMID: 34829539
  48. Bhandari S., Soni B.W., Bahl A., Ghoshal S. Radiotherapy-induced oral morbidities in head and neck cancer patients. Spec Care Dentist. 2020; 40 (3): 238—250. PMID: 32378765
  49. Jansson P.M., Lynggaard C.D., Carlander A.F., Jensen S.B., Follin B., Hoeeg C., Kousholt B.S., Larsen R.T., Grønhøj C., Jakobsen K.K., Rimborg S., Fischer-Nielsen A., Menon J.M.L., von Buchwald C. Mesenchymal stromal/stem cell therapy for radiation-induced salivary gland hypofunction in animal models: a protocol for a systematic review and meta-analysis. Syst Rev. 2022; 11 (1): 72. PMID: 35436971
  50. Bartoshuk L.M., Catalanotto F., Hoffman H., Logan H., Snyder D.J. Taste damage (otitis media, tonsillectomy and head and neck cancer), oral sensations and BMI. Physiol Behav. 2012; 107 (4): 516—26. PMID: 22728784
  51. Rapidis A.D., Dijkstra P.U., Roodenburg J.L., Rodrigo J.P., Rinaldo A., Strojan P., Takes R.P., Ferlito A. Trismus in patients with head and neck cancer: etiopathogenesis, diagnosis and management. Clin Otolaryngol. 2015; 40 (6): 516—26. PMID: 26098612
  52. Hague C., Beasley W., Garcez K., Lee L.W., McPartlin A., McWilliam A., Ryder D., Sykes A.J., Thomson D., van Herk M., West C., Slevin N.J. Prospective evaluation of relationships between radiotherapy dose to masticatory apparatus and trismus. Acta Oncol. 2018; 57 (8): 1038—1042. PMID: 29630433
  53. Brook I. Late side effects of radiation treatment for head and neck cancer. Radiat Oncol J. 2020; 38 (2): 84—92. PMID: 33012151
  54. Rhoten B.A., Murphy B., Ridner S.H. Body image in patients with head and neck cancer: a review of the literature. Oral Oncol. 2013; 49 (8): 753—60. PMID: 23683468
  55. Patterson J.M., Lu L., Watson L.J., Harding S., Ness A.R., Thomas S., Waylen A., Waterboer T., Sharp L. Trends in, and predictors of, swallowing and social eating outcomes in head and neck cancer survivors: A longitudinal analysis of head and neck 5000. Oral Oncol. 2021; 118: 105344. PMID: 34023744
  56. Nayak S.G., Sharan K., Chakrabarty J., Devi E.S., Ravishankar N., George A. Psychosocial distress of head neck cancer (HNC) patients receiving radiotherapy: A systematic review. Asian Pac J Cancer Prev. 2022; 23 (6): 1827—1835. PMID: 35763621

Received

November 18, 2023

Accepted

February 12, 2024

Published on

March 21, 2024