DOI:

10.37988/1811-153X_2023_1_158

Nanotechnology in dentistry: hydrosols of metal nanoparticles are promising antibiotics

Authors

  • S.Yu. Ivanov 1, 2, associate member of the Russian Academy of Sciences, Grand PhD in Medical Sciences, professor of the Oral and maxillofacial surgery Department; head of Maxillofacial Surgery Department.
    ORCID ID: 0000-0001-5458-0192
  • Ya.N. Karasenkov 3, PhD in Medical Sciences, chief medical officer
    ORCID ID: 0000-0002-9658-3700
  • N.V. Latuta 1, PhD Medical Sciences, associate professor of the Department of Pediatric Dentistry, Preventive Dentistry and Orthodontics
    ORCID ID: 0000-0002-6754-0314
  • V.V. Dzhatdaev 4, dental surgeon
    ORCID ID: 0000-0002-0338-4906
  • E.A. Egorov 5, doctor
    ORCID ID: 0000-0002-3519-3864
  • E.K. Tarasova 5, doctor
    ORCID ID: 0000-0002-6715-2071
  • E.V. Kozlova 1, dentist at the Therapeutic Division
    ORCID ID: 0000-0002-3722-2120
  • P.A. Kozlov 1, maxillofacial surgeon at the Maxillofacial Surgery Clinic
    ORCID ID: 0000-0001-5554-7001
  • 1 Sechenov University, 119991, Moscow, Russia
  • 2 RUDN University, 117198, Moscow, Russia
  • 3 “Rosdent” Dental Clinic, 119192, Moscow, Russia
  • 4 “President” Dental Clinic, 117449, Moscow, Russia
  • 5 “Aesthetics” Dental Clinic, 141191, Fryazino, Russia

Abstract

Infectious diseases are the leading cause of morbidity and mortality in the human population. The causative agent for the development of multidrug-resistant bacteria is one of the most acute health problems. The rise in antibiotic resistance is also associated with the lack of new antimicrobials. Purpose: to obtain hydro/alcohol sols of metal nanoparticles with long-term bactericidal action. >. Hydro/alcohol sols were obtained in distilled water/alcohol by arc electric discharge passing through two electrodes: Ag, TiO2, Fe3O4, VO2, CoO, TaO2, ZnO, CuO, a combination of TiO2 + Al2O3 + MoO2. The studies hydrosols of metal nanoparticles CuO, TaO2, Fe3O4, TiO2, Ag, ZnO were carried out on cultures of microorganisms S. aureus, P. aeruginosa, P. vulgaris, S. tiphimurium, C. albicans, E. coli. The hydrosols CuO, TaO2, Fe3O4, TiO2, ZnO contain cetylpyridinium chloride (CPC) as a stabilizer — 0.07%, in the hydrosol Ag the stabilizer is sodium citrate (E331). The observation period is 14 days. >. Metal hydrosols are bactericidally active in a whole solution of 2.4—13.88 mg/L. >. A method for obtaining hydro/alcohol sols of nanodispersed systems of metals Ag, TiO2, Fe3O4, VO2, CoO, TaO2, ZnO, CuO, a combined solution of TiO2, Al2O3, MoO2 has been developed. Hydrosols CuO, TaO2, Fe3O4, TiO2, ZnO, demonstrate long-term bactericidal activity for 14 days.

Key words:

nanoparticles, minimal bactericidal activity, hydrosols, alcohol sols

For Citation

[1]
Ivanov S.Yu., Karasenkov Ya.N., Latuta N.V., Dzhatdaev V.V., Egorov E.A., Tarasova E.K., Kozlova E.V., Kozlov P.A. Nanotechnology in dentistry: hydrosols of metal nanoparticles are promising antibiotics. Clinical Dentistry (Russia).  2023; 26 (1): 158—163. DOI: 10.37988/1811-153X_2023_1_158

References

  1. Jiao Y., Tay F.R., Niu L.N., Chen J.H. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci. 2019; 11 (3): 28. PMID: 31570700
  2. Chevalier M., Ranque S., Prêcheur I. Oral fungal-bacterial biofilm models in vitro: a review. Med Mycol. 2018; 56 (6): 653—667. PMID: 29228383
  3. Sterzenbach T., Helbig R., Hannig C., Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig. 2020; 24 (12): 4237—4260. PMID: 33111157
  4. Benoit D.S.W., Sims K.R. Jr, Fraser D. Nanoparticles for oral biofilm treatments. ACS Nano. 2019; 13 (5): 4869—4875. PMID: 31033283
  5. Chapple I.L., Bouchard P., Cagetti M.G., Campus G., Carra M.C., Cocco F., Nibali L., Hujoel P., Laine M.L., Lingstrom P., Manton D.J., Montero E., Pitts N., Rangé H., Schlueter N., Teughels W., Twetman S., Van Loveren C., Van der Weijden F., Vieira A.R., Schulte A.G. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J Clin Periodontol. 2017; 44 Suppl 18: S39-S51. PMID: 28266114
  6. Sanz M., Beighton D., Curtis M.A., Cury J.A., Dige I., Dommisch H., Ellwood R., Giacaman R.A., Herrera D., Herzberg M.C., Könönen E., Marsh P.D., Meyle J., Mira A., Molina A., Mombelli A., Quirynen M., Reynolds E.C., Shapira L., Zaura E. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J Clin Periodontol. 2017; 44 Suppl 18: S5-S11. PMID: 28266109
  7. Giacaman R.A., Fernández C.E., Muñoz-Sandoval C., León S., García-Manríquez N., Echeverría C., Valdés S., Castro R.J., Gambetta-Tessini K. Understanding dental caries as a non-communicable and behavioral disease: Management implications. Front Oral Health. 2022; 3: 764479. PMID: 36092137
  8. Grigalauskienė R., Slabšinskienė E., Vasiliauskienė I. Biological approach of dental caries management. Stomatologija. 2015; 17 (4): 107—12. PMID: 27189495
  9. Duangthip D., Chen K.J., Gao S.S., Lo E.C.M., Chu C.H. Managing early childhood caries with atraumatic restorative treatment and topical silver and fluoride agents. Int J Environ Res Public Health. 2017; 14 (10): 1204. PMID: 28994739
  10. Pinna R., Usai P., Filigheddu E., Garcia-Godoy F., Milia E. The role of adhesive materials and oral biofilm in the failure of adhesive resin restorations. Am J Dent. 2017; 30 (5): 285—292. PMID: 29178733
  11. Schwendicke F., Lamont T., Innes N. Removing or controlling? How caries management impacts on the lifetime of teeth. Monogr Oral Sci. 2018; 27: 32—41. PMID: 29794420
  12. Abdelaziz M., Zuluaga A.F., Betancourt F., Fried D., Krejci I., Bortolotto T. Optical coherence tomography (OCT) for the evaluation of internal adaptation of class V resin restorations on dentin. Proc SPIE Int Soc Opt Eng. 2020; 11217: 1121706. PMID: 33603262
  13. Carrera C.A., Lan C., Escobar-Sanabria D., Li Y., Rudney J., Aparicio C., Fok A. The use of micro-CT with image segmentation to quantify leakage in dental restorations. Dent Mater. 2015; 31 (4): 382—90. PMID: 25649496
  14. Amissah F., Andey T., Ahlschwede K.M. Nanotechnology-based therapies for the prevention and treatment of Streptococcus mutans-derived dental caries. J Oral Biosci. 2021; 63 (4): 327—336. PMID: 34536629
  15. Ahmadian E., Shahi S., Yazdani J., Maleki Dizaj S., Sharifi S. Local treatment of the dental caries using nanomaterials. Biomed Pharmacother. 2018; 108: 443—447. PMID: 30241047
  16. Chen H., Gu L., Liao B., Zhou X., Cheng L., Ren B. Advances of anti-caries nanomaterials. Molecules. 2020; 25 (21): 5047. PMID: 33143140
  17. Qi M., Chi M., Sun X., Xie X., Weir M.D., Oates T.W., Zhou Y., Wang L., Bai Y., Xu H.H. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomedicine. 2019; 14: 6937—6956. PMID: 31695368
  18. Abuzenada B.M., Sonbul H.M. Bionanocomposites in caries prevention and treatment: A systematic review. J Pharm Bioallied Sci. 2022; 14 (Suppl 1): S13-S18. PMID: 36110829
  19. Rumyantsev V.A., Frolov G.A., Blinova A.V., Karasenkov Y.N., Bityukova E.V. Electron microscopic properties of a new antimicrobial nanodrug based on copper-calcium hydroxide compound. Avicenna Bulletin. 2021; 4: 532—541 (In Russ.). eLIBRARY ID: 48042741
  20. Leont'ev V.K., Kuznetsov D.V., Frolov G.A., Pogorelskiy I.P., Latuta N.V., Krasenkov Y.N. Antibacterial effects of nanoparticles of metals. Russian Journal of Dentistry. 2017; 6: 304—307 (In Russ.). eLIBRARY ID: 32607605
  21. Gladkikh P.G. Effect of silver nanoparticles on biofilms of microorganisms (review). Journal of New Medical Technologies, EEdition. 2015; 1: 3—4 (In Russ.). eLIBRARY ID: 23131226
  22. Zhang L., Weir M.D., Chow L.C., Antonucci J.M., Chen J., Xu H.H. Novel rechargeable calcium phosphate dental nanocomposite. Dent Mater. 2016; 32 (2): 285—93. PMID: 26743970
  23. Hook E.R., Owen O.J., Bellis C.A., Holder J.A., O'Sullivan D.J., Barbour M.E. Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles. J Nanobiotechnology. 2014; 12: 3. PMID: 24456793
  24. Agnihotri R., Gaur S., Albin S. Nanometals in dentistry: Applications and toxicological implications a systematic review. Biol Trace Elem Res. 2020; 197 (1): 70—88. PMID: 31782063
  25. Vasiliu S., Racovita S., Gugoasa I.A., Lungan M.A., Popa M., Desbrieres J. The benefits of smart nanoparticles in dental applications. Int J Mol Sci. 2021; 22 (5): 2585. PMID: 33806682
  26. Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020; 15: 2555—2562. PMID: 32368040
  27. Bapat R.A., Chaubal T.V., Dharmadhikari S., Abdulla A.M., Bapat P., Alexander A., Dubey S.K., Kesharwani P. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020; 586: 119596. PMID: 32622805
  28. Javed R., Rais F., Kaleem M., Jamil B., Ahmad M.A., Yu T., Qureshi S.W., Ao Q. Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry. Int J Biol Macromol. 2021; 167: 1452—1467. PMID: 33212106
  29. Jasso-Ruiz I., Velazquez-Enriquez U., Scougall-Vilchis R.J., Morales-Luckie R.A., Sawada T., Yamaguchi R. Silver nanoparticles in orthodontics, a new alternative in bacterial inhibition: in vitro study. Prog Orthod. 2020; 21 (1): 24. PMID: 32803386
  30. Stubbing J., Brown J., Price G.J. Sonochemical production of nanoparticle metal oxides for potential use in dentistry. Ultrason Sonochem. 2017; 35 (Pt B): 646—654. PMID: 27282407
  31. De Matteis V., Cascione M., Toma C.C., Albanese G., De Giorgi M.L., Corsalini M., Rinaldi R. Silver nanoparticles addition in poly (methyl methacrylate) dental matrix: Topographic and antimycotic studies. Int J Mol Sci. 2019; 20 (19): 4691. PMID: 31546661
  32. Campos F., Bonhome-Espinosa A.B., Carmona R., Durán J.D.G., Kuzhir P., Alaminos M., López-López M.T., Rodriguez I.A., Carriel V. In vivo time-course biocompatibility assessment of biomagnetic nanoparticles-based biomaterials for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2021; 118: 111476. PMID: 33255055
  33. Gutiérrez de la Rosa S.Y., Muñiz Diaz R., Villalobos Gutiérrez P.T., Patakfalvi R., Gutiérrez Coronado Ó. Functionalized platinum nanoparticles with biomedical applications. Int J Mol Sci. 2022; 23 (16): 9404. PMID: 36012670
  34. Taran M., Rad M., Alavi M. Biosynthesis of TiO (2) and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. Bioimpacts. 2018; 8 (2): 81—89. PMID: 29977829
  35. Paiva-Santos A.C., Herdade A.M., Guerra C., Peixoto D., Pereira-Silva M., Zeinali M., Mascarenhas-Melo F., Paranhos A., Veiga F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm. 2021; 597: 120311. PMID: 33539998

Received

July 11, 2022

Accepted

February 8, 2023

Published on

March 22, 2023