DOI:

10.37988/1811-153X_2022_4_94

Subperiosteal implant for upper jaw dentures in case of severe atrophy of the alveolar ridge

Authors

  • N.V. Kalakutsky 1, PhD in Medical Sciences, full professor of the Oral and maxillofacial surgery Department
    ORCID ID: 0000-0002-2493-5498
  • I.V. Ivanov 1, PhD in Medical Sciences, assistant professor of the Oral and maxillofacial surgery Department
    ORCID ID: 0000-0002-1450-5953
  • I.V. Zhuravlev 1, PhD in Medical Sciences, assistant professor of the Oral and maxillofacial surgery Department
    ORCID ID: 0000-0002-6742-5703
  • V.P. Koshelev 2, maxillofacial surgeon, dentistry surgeon
    ORCID ID: 0000-0002-9881-0241
  • S.N. Mishchenko 2, dentist
    ORCID ID: 0000-0002-7413-5907
  • 1 Pavlov University, 197022, Saint-Petersburg, Russia
  • 2 Dr. Koshelev Dentistry, 197110, Saint-Petersburg, Russia

Abstract

In optimal clinical conditions, dental implantation is performed with sufficient bone tissue, without the need to resort to more complex interventions. But sometimes, in the absence of the required amount of bone tissue of the alveolar process, it is not possible to insert implants without its reliable primary stabilization. A subperiosteal implant refers to a type of dental implant that is placed between the periosteum and alveolar bone and has two to four transgingival abutments. The advantage of this design is that the abutments are integral with the implant body, eliminating the need for multi-unit abutments. But it is also necessary to take into account their shortcomings, the main problem of which is the resorption of bone tissue in the upper jaw and the difficulty of positioning with the body of the upper jaw.

Key words:

alveolar ridge atrophy, edentulous, dental implant, subperiosteal implant, stereolithographic model

For Citation

[1]
Kalakutsky N.V., Ivanov I.V., Zhuravlev I.V., Koshelev V.P., Mishchenko S.N. Subperiosteal implant for upper jaw dentures in case of severe atrophy of the alveolar ridge. Clinical Dentistry (Russia).  2022; 25 (4): 94—100. DOI: 10.37988/1811-153X_2022_4_94

References

  1. Yumashev A.V. Mesodiencephalic modulation in the complex of treatment and prevention of inflammatory complications in patients with orthopedic structures during dental implantation: dissertation abstract. Moscow: Sechenov University, 2018. 23 p. (In Russ.).
  2. Liu X., Pang F., Li Y., Jia H., Cui X., Yue Y., Yang X., Yang Q. Effects of different positions and angles of implants in maxillary edentulous jaw on surrounding bone stress under dynamic loading: A three-dimensional finite element analysis. Comput Math Methods Med. 2019; 2019: 8074096. PMID: 31933678
  3. Parthasarathy J., Starly B., Raman S., Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010; 3 (3): 249—59. PMID: 20142109
  4. Nazarian A. Placement of a modified subperiosteal implant: a clinical solution to help those with no bone. Dent Today. 2014; 33 (7): 134, 136—7.
  5. Razdorsky V.V. Intraosseous and subperiosteal implants in the treatment of patients with jaw reduction: dissertation abstract. Saint-Petersburg: Pavlov University, 2014. 29 p. (In Russ.). eLIBRARY ID: 30400954
  6. Scherchkov S.V., Osman B.M., Braylovskaya T.V. Stomatological rehabilitation using dental implants in bone tissue atrophy. Aspirantskiy Vestnik Povolzhiya. 2012; 5—6: 228—231 (In Russ.). eLIBRARY ID: 18916016
  7. Beddis H., Lello S., Cunliffe J., Coulthard P. Subperiosteal implants. Br Dent J. 2012; 212 (1): 4. PMID: 22240669
  8. Takaoka K., Segawa E., Noguchi K., Kishimoto H., Urade M. Maxillary subperiosteal implantitis that caused severe bone resorption of the maxilla with perforation of the maxillary sinus and sinusitis: A case report. Open Journal of Stomatology. 2013; 3: 226—229. DOI: 10.4236/ojst.2013.33039.
  9. Badalyan V.A. Minimally invasive technologies of dental implantation: pathogenetic substantiation and evaluation of the clinical, economic and ergonomic efficiency of implementation in dental practice: dissertation abstract. Moscow: Central Research Institute of Dental and Maxillofacial Surgery, 2014. 46 p. (In Russ.). eLIBRARY ID: 30396024
  10. Ishchenko P. The path of the patient: subperiosteal implants as an alternative to your possibilities. Actual Dentistry. 2016; 4 (83): 84 (In Russ.). eLIBRARY ID: 27335588
  11. Alekhin A.P., Markeev A.M., Gudkova S.A., Tetyukhin D.V., Kozlov E.N. Application of atomic-layer deposition of titanium dioxide for creation of bioactive properties of titanium implant surface. The Dental Institute. 2010; 2 (47): 68—69 (In Russ.). eLIBRARY ID: 15267658
  12. Smbatian B.S., Volkov A.V., Omarov T.V., Lomakin M.V. The study of osteointegration of KONMET implants having the bioactive surface. Russian Stomatology. 2014; 4: 15—24 (In Russ.). eLIBRARY ID: 23052148
  13. Sing S.L., An J., Yeong W.Y., Wiria F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res. 2016; 34 (3): 369—85. PMID: 26488900
  14. Alymbaev R.S. Rational for use one-stage subperiosteal implantation using stereolithographic models. Vestnik KRSU. 2015; 4: 11—14 (In Russ.). eLIBRARY ID: 23838341
  15. Carnicero A., Peláez A., Restoy-Lozano A., Jacquott I., Perera R. Improvement of an additively manufactured subperiosteal implant structure design by finite elements based topological optimization. Sci Rep. 2021; 11 (1): 15390. PMID: 34321582
  16. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014; 4 (1): 9—18. PMID: 24987592
  17. Vandenbroucke B., Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal. 2007; 13 (4): 196—203. DOI: 10.1108/13552540710776142.
  18. Barrero C., Border M.B., Bencharit S. Fabrication of a maxillary implant retained overdenture using an existing subperiostal implant: a clinical report. Open Dent J. 2011; 5: 122—5. PMID: 21804901
  19. Cerea M., Dolcini G.A. Custom-made direct metal laser sintering titanium subperiosteal implants: A retrospective clinical study on 70 patients. Biomed Res Int. 2018; 2018: 5420391. PMID: 29998133
  20. Mommaerts M.Y. Additively manufactured sub-periosteal jaw implants. Int J Oral Maxillofac Surg. 2017; 46 (7): 938—940. PMID: 28258795
  21. Alymbaev R.S., Selpiev T.T., Jolueva P.T. The fixation and stabilization of subperiostal implants. Bulletin of Kyrgyz State Medical Academy. 2014; 2: 104—108 (In Russ.). eLIBRARY ID: 22010911
  22. Chuiko A.N., Surov O.N., Shinchukovsky I.A., Alymbaev R.S. Biomechanics substantiation of the rational subperiostal implant fixation. Ukrainian Dental Almanac. 2010; 1: 27—38 (In Russ.). eLIBRARY ID: 23221910
  23. Alymbaev R.S. Comparative analysis of the two-stage subperiosteal implantation and rapid reduction in the jaw bones. Vestnik KRSU. 2015; 4: 15—18 (In Russ.). eLIBRARY ID: 23838342
  24. Umarov A.M., Alimbaev R.S. The surgical report of operation of subperiosteal implantation. Bulletin of Kyrgyz State Medical Academy. 2011; 4: 73—76 (In Russ.). eLIBRARY ID: 18250107
  25. Claffey N., Bashara H., O'Reilly P., Polyzois I. Evaluation of new bone formation and osseointegration around subperiosteal titanium implants with histometry and nanoindentation. Int J Oral Maxillofac Implants. 2015; 30 (5): 1004—10. PMID: 26394334
  26. Bayrikov I.M., Komlev S.S., Shcherbakov M.V. Orthopedic treatment using implants with combination of adverse factors. The Dental Institute. 2017; 1 (74): 84—85 (In Russ.). eLIBRARY ID: 28965104
  27. Lutskaya I.K., Bortkevich S.P., Nazarov I.E., Korzhev A.O. Experience of fixed prosthetics on dental implants. Sovremennaya stomatologiya (Belarus). 2016; 3 (64): 56—58 (In Russ.). eLIBRARY ID: 27399853
  28. Wagner F., Seemann R., Marincola M., Ewers R. Fiber-reinforced resin fixed prostheses on 4 short implants in severely atrophic maxillas: 1-year results of a prospective cohort study. J Oral Maxillofac Surg. 2018; 76 (6): 1194—1199. PMID: 29534871
  29. Saini H., Ackland D.C., Gong L., Cheng, Röhrle O. Occlusal load modelling significantly impacts the predicted tooth stress response during biting: a simulation study. Comput Methods Biomech Biomed Engin. 2020; 23 (7): 261—270. PMID: 31965827

Received

August 8, 2022

Accepted

November 14, 2022

Published on

December 21, 2022