DOI:

10.37988/1811-153X_2022_3_60

Computer tomography application for infra zygomatic region examination for orthodontics mini screw install

Authors

  • S.A. Larina 1, 5th year student at the Department of Dentistry
    ORCID ID: 0000-0002-2348-068X
  • A.O. Gegamyan 1, assistant at the Pediatric dentistry Department
    ORCID ID: 0000-0002-8176-8913
  • L.R. Sarap 1, PhD in Medical Sciences, full professor of the Pediatric dentistry Department
    ORCID ID: 0000-0001-6599-1683
  • E.A. Podzorova 1, PhD in Medical sciences, associate professor of the Pediatric dentistry Department
    ORCID ID: 0000-0001-9618-3611
  • A.A. Lytkina 1, assistant at the Pediatric dentistry Department
    ORCID ID: 0000-0003-1567-7092
  • Yu.N. Shilova 1, PhD in Medical sciences, associate professor of the Pediatric dentistry Department
    ORCID ID: 0000-0002-0605-6983
  • 1 Altai State Medical University, 656038, Barnaul, Russia

Abstract

This article reviews the experience of using computed tomography to determine the anatomical and morphological features of the submucosal ridge as a choice of placement site for an orthodontic miniscrew. . Analysis of computed tomograms from 20 patients (age 18-45 years) with dentoalveolar anomalies and normodivergent facial growth type was performed. The bone thickness in the selected area and the length of the presumed miniscrew in each selected area were determined. . In 7 (35%) patients, the greatest amount of bone was found in the area of the distal-cheek root of the first molar. The average thickness in this area was 3.4 mm. In the area of the medial-cheek root of the first molar, the greatest bone thickness was found in only 3 (15%) patients. The average bone thickness in this area was 2.6 mm, but the minimum thickness was 2.2 mm, insufficient for the insertion of a mini screw. In 5 (25%) patients, the area between the first and second molars was the site of choice for mini screw insertion. The average thickness was 3.7 mm. However, in the area of the medial-cheek root of the second molar, a higher mean bone thickness was found; despite this, in only 5 (25%) patients, this area was selected for the insertion of mini screws. The average value was 3.8 mm. At the same time, the greatest length was required in the area of the medial-cheek root of the second molar. . According to the data obtained, the area of the distal-cheek root of the first molar was selected as the site of choice for inserting an orthodontic mini-screw, and the recommended length of the mini-screw was 17.7 mm.

Key words:

mini screw, IZC, computer tomography

For Citation

[1]
Larina S.A., Gegamyan A.O., Sarap L.R., Podzorova E.A., Lytkina A.A., Shilova Yu.N. Computer tomography application for infra zygomatic region examination for orthodontics mini screw install. Clinical Dentistry (Russia).  2022; 25 (3): 60—66. DOI: 10.37988/1811-153X_2022_3_60

References

  1. Burlutskay S.I., Kalivradjiyan E.S., Adamchik Al.A. Treatment of distal occlusion in the period of forming permanent occlusion in the patients passing peak of pubertal growth. System Analysis and Management in Biomedical Systems. 2005; 1: 99—100 (In Russ.). eLIBRARY ID: 11665851
  2. Cornelis M.A., Scheffler N.R., Mahy P., Siciliano S., De Clerck H.J., Tulloch J.F. Modified miniplates for temporary skeletal anchorage in orthodontics: placement and removal surgeries. J Oral Maxillofac Surg. 2008; 66 (7): 1439—45. PMID: 18571028
  3. Chang H.P., Tseng Y.C. Miniscrew implant applications in contemporary orthodontics. Kaohsiung J Med Sci. 2014; 30 (3): 111—5. PMID: 24581210
  4. Diar-Bakirly S., Feres M.F., Saltaji H., Flores-Mir C., El-Bialy T. Effectiveness of the transpalatal arch in controlling orthodontic anchorage in maxillary premolar extraction cases: A systematic review and meta-analysis. Angle Orthod. 2017; 87 (1): 147—158. PMID: 27504820
  5. De Pauw G.A., Dermaut L., De Bruyn H., Johansson C. Stability of implants as anchorage for orthopedic traction. Angle Orthod. 1999; 69 (5): 401—7. PMID: 10515136
  6. Peregudov A.B., Stupnikov A.A., Gareev P.T. Role of the premolars in forming of neiro-muscular-occlusal balance (clinical example). Russian Journal of Dentistry. 2013; 5: 30—31 (In Russ.). eLIBRARY ID: 21184247
  7. Deshmukh S.V., Vadera K.J. Nonextraction treatment with en-masse distalization of maxillary dentition using miniscrews. Journal of Indian Orthodontic Society. 2018; 52 (3): 204—209. DOI: 10.4103/jios.jios_235_17
  8. Lee A.Y., Kim Y.H. Comparison of movement of the upper dentition according to anchorage method: orthodontic mini-implant versus conventional anchorage reinforcement in Class I malocclusion. ISRN Dent. 2011; 2011: 321206. PMID: 21991465
  9. Papadopoulos M.A., Papageorgiou S.N., Zogakis I.P. Clinical effectiveness of orthodontic miniscrew implants: a meta-analysis. J Dent Res. 2011; 90 (8): 969—76. PMID: 21593250
  10. Liaw J.L., Roberts W.E. Paradigm shift in class III treatment with TADs. International Journal of Orthodontics & Implantology. 2012; 28: 22—36.
  11. Chang C.H., Lin J.S., Roberts W.E. Failure rates for stainless steel versus titanium alloy infrazygomatic crest bone screws: A single-center, randomized double-blind clinical trial. Angle Orthod. 2019; 89 (1): 40—46. PMID: 30372127
  12. Watanabe H., Deguchi T., Hasegawa M., Ito M., Kim S., Takano-Yamamoto T. Orthodontic miniscrew failure rate and root proximity, insertion angle, bone contact length, and bone density. Orthod Craniofac Res. 2013; 16 (1): 44—55. PMID: 23311659
  13. Hsu E., Lin J.S.Y, Yeh H.Y., Chang C.H., Roberts W.E. Comparison of the failure rate for infrazygomatic bone screws placed in movable mucosa or attached gingiva. International Journal of Orthodontics & Implantology. 2017; 47: 96—106.
  14. Liu H., Wu X., Yang L., Ding Y. Safe zones for miniscrews in maxillary dentition distalization assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2017; 151 (3): 500—506. PMID: 28257734
  15. Maino B.G., Mura P., Bednar J. Miniscrew implants: the Spider Screw anchorage system. Seminars in Orthodontics. 2005; 11 (1): 40—46. DOI: 10.1053/j.sodo.2004.11.007.
  16. Lin J.J., Roberts W.E. CBCT imaging to diagnose and correct the failure of maxillary arch retraction with IZC screw anchorage. International Journal of Orthodontics & Implantology. 2014; 35: 4—17.
  17. Weber G.W., Krenn V.A. Zygomatic Root Position in Recent and Fossil Hominids. Anat Rec (Hoboken). 2017; 300 (1): 160—170. PMID: 28000406
  18. Lin J.J., Roberts W.E. Guided infra-zygomatic screws: Reliable maxillary arch retraction. International Journal of Orthodontics & Implantology. 2017; 46: 4—16.
  19. Proffit W. Contemporary Orthodontics. St. Louis: Mosby, 2018. P. 560.
  20. Popova N.V., Arsenina O.I., Lebedenko I.Y., Rusanov F.S., Khvorostenko E.A., Glukhova N.V. An analysis of orthodontic miniscrew stability in experimantal and clinical cases. Vestnik of North-Eastern Federal University. Medical Sciences. 2021; 2 (23): 32—38 (In Russ.). eLIBRARY ID: 46236776
  21. Chang C.C.H., Lin J.S.Y., Yeh H.Y. Extra-alveolar bone screws for conservative correction of severe malocclusion without extractions or orthognathic surgery. Curr Osteoporos Rep. 2018; 16 (4): 387—394. PMID: 29959724
  22. Du B., Zhu J., Li L., Fan T., Tan J., Li J. Bone depth and thickness of different infrazygomatic crest miniscrew insertion paths between the first and second maxillary molars for distal tooth movement: A 3-dimensional assessment. Am J Orthod Dentofacial Orthop. 2021; 160 (1): 113—123. PMID: 34092464
  23. Chang C.H., Lin J.S., Yeh H., Roberts W.E. Insights to extraradicular bone screw applications for challenging malocclusions. In: Park J.H. Temporary anchorage devices in clinical orthodontics. Hoboken (NJ): Wiley, 2020. Pp. 433—444. DOI: 10.1002/9781119513636.ch42
  24. Lima A. jr, Domingos R.G., Cunha Ribeiro A.N., Rino Neto J., de Paiva J.B. Safe sites for orthodontic miniscrew insertion in the infrazygomatic crest area in different facial types: A tomographic study. Am J Orthod Dentofacial Orthop. 2022; 161 (1): 37—45. PMID: 34391619
  25. Murugesan A., Jain R.K. A 3D comparison of dimension of infrazygomatic crest region in different vertical skeletal patterns: A retrospective study. Int Orthod. 2020; 18 (4): 770—775. PMID: 32978079
  26. Tozlu M., Germeç Cakan D., Ulkur F., Ozdemir F. Maxillary buccal cortical plate inclination at mini-screw insertion sites. Angle Orthod. 2015; 85 (5): 868—73. PMID: 25405385

Received

May 27, 2022

Accepted

July 12, 2022

Published on

October 30, 2022