DOI:

10.37988/1811-153X_2022_1_54

Cytological features of peripheral blood leukocytes in patients with facial phlegmon

Authors

  • I.A. Boev 1, dentist at the University dental Hospital, PhD candidate at the Oral and maxillofacial surgery Department
    ORCID ID: 0000-0002-9682-7680
  • 1 Perm State Medical University, 614000, Perm, Russia

Abstract

Leukocytes involved in the development of the facial phlegmon inflammatory process are influenced by the microflora and its metabolites, as well as by the decaying tissues of the patient. Relatively little attention is paid to the cytological features of peripheral blood leukocytes and exudate in facial phlegmon. The aim of the research was to study some of the cytological features of neutrophilic leukocytes and monocytes of peripheral blood and exudate in patients with facial phlegmon.
Materials and methods.
Evaluation of the content of certain types of leukocytes and their cytological features was carried out on smears obtained from samples of peripheral blood from 18 patients with a diagnosis of facial phlegmon and 29 healthy donors. Exudate samples were taken from patients at the stage of surgical treatment. The smears were fixed with May—Grünwald solution and stained according to the Romanovsky—Giemsa method.
Results.
It was shown that under facial phlegmon an increase in the number of leukocytes with a shift of the formula to the left was observed. At the same time, the segmentation of the nucleus of blood neutrophils increases, which may be necessary to facilitate their migration to the inflammation focus. Vacuolization of the cytoplasm is characteristic of blood monocytes. The cellular composition of the exudate in facial phlegmon is represented mainly by neutrophils (74.6±6.6%) and monocytes. Vacuolization of exudate monocytes is significantly more pronounced than those in the blood. Thus, the number of monocytes with vacuoles was 3 times more, and with inclusions — 13 times more than in the same patients in the blood. The revealed cytological changes indicate that two factors are likely to act in the pathogenesis of facial phlegmon: an increase in the microbial load and tissue decay products.
Conclusion.
Thus, the revealed cytological changes in leukocytes in facial phlegmon indicate, on the one hand, their activation, and on the other, a greater severity of cell destruction.

Key words:

leukocytes, facial phlegmon, neutrophils, monocytes, cytological features

For Citation

[1]
Boev I.A. Cytological features of peripheral blood leukocytes in patients with facial phlegmon. Clinical Dentistry (Russia).  2022; 25 (1): 54—57. DOI: 10.37988/1811-153X_2022_1_54

References

  1. Boev I.A., Shtraube G.I., Antakov G.I., Godovalov A.P. Some epidemiological aspects of the face flegmons morbidity. The Dental Institute. 2017; 4 (77): 24—25 (In Russ.). eLIBRARY ID: 32302004
  2. Boev I.A., Godovalov A.P., Shtraube G.I., Antakov G.I. Characteristic features of maxillofacial phlegmon morbidity with assessment of efficiency of detoxication therapy. Perm Medical Journal. 2019; 2: 29—35 (In Russ.). eLIBRARY ID: 37629687
  3. Hajdamowicz N.H., Hull R.C., Foster S.J., Condliffe A.M. The impact of hypoxia on the host-pathogen interaction between neutrophils and Staphylococcus aureus. Int J Mol Sci. 2019; 20 (22): E5561. PMID: 31703398
  4. Rath E., Skrede S., Mylvaganam H., Bruun T. Aetiology and clinical features of facial cellulitis: a prospective study. Infect Dis (Lond). 2018; 50 (1): 27—34. PMID: 28768452
  5. Italiani P., Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol. 2014; 5: 514. PMID: 25368618
  6. de Jong N.W.M., van Kessel K.P.M., van Strijp J.A.G. Immune evasion by Staphylococcus aureus. Microbiol Spectr. 2019; 7 (2). PMID: 30927347
  7. Lewis M.L., Surewaard B.G.J. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus. Cell Tissue Res. 2018; 371 (3): 489—503. PMID: 29204747
  8. Boev I.A., Straube G.I., Antakov G.I., Godovalov A.P. Endogenous intoxication in patients with face phlegmons. Clinical Dentistry (Russia). 2018; 1 (85): 54—57 (In Russ.). eLIBRARY ID: 32759413
  9. Bortolotti P., Faure E., Kipnis E. Inflammasomes in tissue damages and immune disorders after trauma. Front Immunol. 2018; 9: 1900. PMID: 30166988
  10. Afanaseva A.N., Odintsova I.N., Udut V.V. Endogenous intoxication and systemic inflammatory response syndromes: similarity and differences. Russian journal of Anaesthesiology and Reanimatology. 2007; 4: 67—71 (In Russ.). eLIBRARY ID: 21292709
  11. Kelly M., Hwang J.M., Kubes P. Modulating leukocyte recruitment in inflammation. J Allergy Clin Immunol. 2007; 120 (1): 3—10. PMID: 17559914
  12. Kokulu K., Günaydın Y.K., Akıllı N.B., Köylü R., Sert E.T., Köylü Ö., Cander B. Relationship between the neutrophil-to-lymphocyte ratio in acute pancreatitis and the severity and systemic complications of the disease. Turk J Gastroenterol. 2018; 29 (6): 684—691. PMID: 30381275
  13. Gulati G., Song J., Florea A.D., Gong J. Purpose and criteria for blood smear scan, blood smear examination, and blood smear review. Ann Lab Med. 2013; 33 (1): 1—7. PMID: 23301216
  14. Chabot-Richards D.S., George T.I. White blood cell counts: reference methodology. Clin Lab Med. 2015; 35 (1): 11—24. PMID: 25676369
  15. Pierre R.V. Peripheral blood film review. The demise of the eyecount leukocyte differential. Clin Lab Med. 2002; 22 (1): 279—97. PMID: 11933579
  16. Rocher A.E., Guerra F., Rofrano J., Angeleri A., Canessa O.E., Mendeluk G.R., Palaoro L.A. Sensitivity and specificity of cytodiagnosis of body fluids in a laboratory of urgencies. Biotech Histochem. 2011; 86 (5): 326—32. PMID: 20961211
  17. Honda T., Uehara T., Matsumoto G., Arai S., Sugano M. Neutrophil left shift and white blood cell count as markers of bacterial infection. Clin Chim Acta. 2016; 457: 46—53. PMID: 27034055
  18. Holub M., Klucková Z., Helcl M., Príhodov J., Rokyta R., Beran O. Lymphocyte subset numbers depend on the bacterial origin of sepsis. Clin Microbiol Infect. 2003; 9 (3): 202—11. PMID: 12667252
  19. Ansaldo E., Farley T.K., Belkaid Y. Control of Immunity by the Microbiota. Annu Rev Immunol. 2021; 39: 449—479. PMID: 33902310
  20. Barkhina T.G., Gushchin M.Y., Alekseev Y.V., Ivanov A.V., Davydov E.V., Yudina E.B. Ultrastructural analysis of different populations of blood cells during allergic diseases and effects of light-oxygen and photodynamic effects. Journal of New Medical Technologies, EEdition. 2018; 4: 218—224 (In Russ.). eLIBRARY ID: 35552524
  21. Maiuolo J., Gliozzi M., Musolino V., Carresi C., Nucera S., Scicchitano M., Scarano F., Bosco F., Oppedisano F., Macrì R., Mollace V. Environmental and nutritional «stressors» and oligodendrocyte dysfunction: Role of mitochondrial and endoplasmatic reticulum impairment. Biomedicines. 2020; 8 (12): E553. PMID: 33265917
  22. Shubin A.V., Demidyuk I.V., Komissarov A.A., Rafieva L.M., Kostrov S.V. Cytoplasmic vacuolization in cell death and survival. Oncotarget. 2016; 7 (34): 55863—55889. PMID: 27331412
  23. Aki T., Nara A., Uemura K. Cytoplasmic vacuolization during exposure to drugs and other substances. Cell Biol Toxicol. 2012; 28 (3): 125—31. PMID: 22431173
  24. Kashutin S.L., Vilova K.G., Shagrov L.L., Sherstennikova A.K., Neklyudova V.S., Tedder E.I., Utyugova V.N. Morphofunctional characteristics of monocytes migration into the skin. Pathological Physiology and Experimental Therapy. 2018; 4: 130—135 (In Russ.). eLIBRARY ID: 36575952
  25. Gossett K.A., MacWilliams P.S., Cleghorn B. Sequential morphological and quantitative changes in blood and bone marrow neutrophils in dogs with acute inflammation. Can J Comp Med. 1985; 49 (3): 291—7. PMID: 4041973
  26. Lee W.L., Harrison R.E., Grinstein S. Phagocytosis by neutrophils. Microbes Infect. 2003; 5 (14): 1299—306. PMID: 14613773

Received

November 26, 2021

Accepted

February 28, 2022

Published on

March 1, 2022