Липидный обмен как микроэкологический и системный фактор развития заболеваний пародонта (обзор)

Авторы

  • К.Г. Унаньян 1, врач-стоматолог
  • И.П. Балмасова 2, 3, д.м.н., профессор, зав. лабораторией патогенеза и методов лечения инфекционных заболеваний НИМСИ; профессор кафедры аллергологии и иммунологии Мединститута
  • В.Н. Царев 2, д.м.н., профессор, зав. кафедрой микробиологии, вирусологии, иммунологии, директор НИМСИ
  • А.М. Мкртумян 2, д.м.н., профессор, зав. кафедрой эндокринологии и диабетологии
  • К.С. Эльбекьян 4, д.б.н., доцент, зав. кафедрой общей и биологической химии
  • К.Г. Караков 4, д.м.н., профессор, зав. кафедрой терапевтической стоматологии
  • М.С. Гонтаренко 5, врач клинической лабораторной диагностики
  • С.Д. Арутюнов 2, д.м.н., профессор, зав. кафедрой пропедевтики стоматологических заболеваний
  • 1 Динская Центральная районная больница, ст. Динская, Краснодарский край
  • 2 МГМСУ им. А.И. Евдокимова
  • 3 РУДН
  • 4 СтГМУ
  • 5 Инфекционная клиническая больница № 2, Москва

DOI:

10.37988/1811-153X_2020_3_36

Аннотация

Цель — анализ современных представлений о взаимосвязи между состоянием липидного обмена и заболеваниями пародонта. Материалы и методы. Исследование проведено путем аналитического обзора публикаций российских и зарубежных научных изданий, в которых представлены результаты независимых клинических и лабораторных исследований данного материала с 2005 по 2019 г. Результаты. Установлено, что роль липидов в составе ключевых бактерий-пародонтопатогенов в процессе взаимодействия пародонтопатогенных бактерий с клетками пародонтальных тканей в качестве компонентов биологических жидкостей организма человека при инфекционно-воспалительных заболеваниях пародонта не вызывает сомнений и характеризуется высокой патогенетической значимостью. Заключение. Можно заключить, что липидный метаболизм как пародонтопатогенных бактерий, так и макроорганизма на местном и системном уровне играет существенную роль в возникновении и прогрессировании заболеваний пародонта, а исследования в этом направлении открывают широкие перспективы для развития клинической пародонтологии и разработки новых средств для лечения и профилактики столь распространенной патологии, способной к индукции системных эффектов.

Ключевые слова:

липидный обмен, заболевания пародонта, пародонтопатогенные бактерии, системные эффекты

Для цитирования

[1]
Унаньян К.Г., Балмасова И.П., Царев В.Н., Мкртумян А.М., Эльбекьян К.С., Караков К.Г., Гонтаренко М.С., Арутюнов С.Д. Липидный обмен как микроэкологический и системный фактор развития заболеваний пародонта (обзор). — Клиническая стоматология. — 2020; 3 (95): 36-43. DOI: 10.37988/1811-153X_2020_3_36

Список литературы

  1. Hajishengallis G., Darveau R.P., Curtis M.A. The keystone-pathogen hypothesis. — Nat Rev Microbiol. — 2012; 10 (10): 717—25. PMID: 22941505
  2. Tonetti M.S., Jepsen S., Jin L., Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. — J Clin Periodontol. — 2017; 44 (5): 456—462. PMID: 28419559
  3. Bui F.Q., Almeida-da-Silva C.L.C., Huynh B., Trinh A., Liu J., Woodward J., Asadi H., Ojcius D.M. Association between periodontal pathogens and systemic disease. — Biomed J. — 2019; 42 (1): 27—35. PMID: 30987702
  4. Nakao R., Hasegawa H., Dongying B., Ohnishi M., Senpuku H. Assessment of outer membrane vesicles of periodontopathic bacterium Porphyromonas gingivalis as possible mucosal immunogen. — Vaccine. — 2016; 34 (38): 4626—34. PMID: 27461458
  5. de Andrade K.Q., Almeida-da-Silva C.L.C., Coutinho-Silva R. Immunological pathways triggered by Porphyromonas gingivalis and Fusobacterium nucleatum: Therapeutic possibilities?. — Mediators Inflamm. — 2019; 2019: 7241312. PMID: 31341421
  6. Cekici A., Kantarci A., Hasturk H., Dyke T.E.V. Inflammatory and immune pathways in the pathogenesis of periodontal disease. — Periodontol 2000. — 2014; 64 (1): 57—80. PMID: 24320956
  7. Николаева Е.Н., Царев В.Н., Ипполитов Е.В. Пародонтопатогенные бактерии — индикаторы риска возникновения и развития пародонтита (часть 2). — Стоматология для всех. — 2011; 4: 4—7. eLIBRARY ID: 17279850
  8. Царев В.Н. Микробиология, вирусология, иммунология. — М.: ГЭОТАР-Медиа, 2013. — С. 34—45.
  9. Wolcott R., Costerton J.W., Raoult D., Cutler S.J. The polymicrobial nature of biofilm infection. — Clin Microbiol Infect. — 2013; 19 (2): 107—12. PMID: 22925473
  10. Цепов Л.М., Николаев А.И., Цепова Е.Л., Цепов А.Л. Патология пародонта при системных заболеваниях. — Маэстро стоматологии. — 2009; (1): 64—7.
  11. Hasturk H., Kantarci A., Dyke T.E.V. Oral inflammatory diseases and systemic inflammation: role of the macrophage. — Front Immunol. — 2012; 3: 118. PMID: 22623923
  12. Muluke M., Gold T., Kiefhaber K., Al-Sahli A., Celenti R., Jiang H., Cremers S., Dyke T.V., Schulze-Späte U. Diet-Induced obesity and its differential impact on periodontal bone loss. — J Dent Res. — 2016; 95 (2): 223—9. PMID: 26450512
  13. Chaffee B.W., Weston S.J. Association between chronic periodontal disease and obesity: a systematic review and meta-analysis. — J Periodontol. — 2010; 81 (12): 1708—24. PMID: 20722533
  14. Nepomuceno R., Pigossi S.C., Finoti L.S., Orrico S.R.P., Cirelli J.A., Barros S.P., Offenbacher S., Scarel-Caminaga R.M. Serum lipid levels in patients with periodontal disease: A meta-analysis and meta-regression. — J Clin Periodontol. — 2017; 44 (12): 1192—1207. PMID: 28782128
  15. Hajishengallis G., Liang S., Payne M.A., Hashim A., Jotwani R., Eskan M.A., McIntosh M.L., Alsam A., Kirkwood K.L., Lambris J.D., Darveau R.P., Curtis M.A. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. — Cell Host Microbe. — 2011; 10 (5): 497—506. PMID: 22036469
  16. Янушевич О.О., Ахмедов Г.Д., Панин А.М., Арутюнов С.Д., Царев В.Н. Микроэкология полости рта и инфекционно-воспалительные осложнения в хирургической стоматологии. — М.: Практическая медицина, 2019. — С. 71—146.
  17. Xiao X., Sankaranarayanan K., Khosla C. Biosynthesis and structure-activity relationships of the lipid A family of glycolipids. — Curr Opin Chem Biol. — 2017; 40: 127—137. DOI: 10.1016/j.cbpa.2017.07.008.
  18. Raetz C.R.H., Guan Z., Ingram B.O., Six D.A., Song F., Wang X., Zhao J. Discovery of new biosynthetic pathways: the lipid A story. — J Lipid Res. — 2009; 50 Suppl (Suppl): S103—8. PMID: 18974037
  19. Curtis M.A., Percival R.S., Devine D., Darveau R.P., Coats S.R., Rangarajan M., Tarelli E., Marsh P.D. Temperature-dependent modulation of Porphyromonas gingivalis lipid A structure and interaction with the innate host defenses. — Infect Immun. — 2011; 79 (3): 1187—93. PMID: 21220483
  20. Rangarajan M., Aduse-Opoku J., Paramonov N.A., Hashim A., Curtis M.A. Hemin binding by Porphyromonas gingivalis strains is dependent on the presence of A-LPS. — Mol Oral Microbiol. — 2017; 32 (5): 365—374. PMID: 28107612
  21. Herath T.D.K., Wang Y., Seneviratne C.J., Lu Q., Darveau R.P., Wang C.-Y., Jin L. Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity differentially modulates the expression of IL-6 and IL-8 in human gingival fibroblasts. — J Clin Periodontol. — 2011; 38 (8): 694—701. PMID: 21752043
  22. Lu Q., Darveau R.P., Samaranayake L.P., Wang C.-Y., Jin L. Differential modulation of human {beta}-defensins expression in human gingival epithelia by Porphyromonas gingivalis lipopolysaccharide with tetra- and penta-acylated lipid A structures. — Innate Immun. — 2009; 15 (6): 325—35. PMID: 19675119
  23. Ding P.-H., Wang C.-Y., Darveau R.P., Jin L. Porphyromonas gingivalis LPS stimulates the expression of LPS-binding protein in human oral keratinocytes in vitro. — Innate Immun. — 2013; 19 (1): 66—75. PMID: 22736337
  24. Ding P-H., Wang C-Y., Darveau R.P., Jin L.J. Nuclear factor-κB and p38 mitogen-activated protein kinase signaling pathways are critically involved in Porphyromonas gingivalis lipopolysaccharide induction of lipopolysaccharide-binding protein expression in human oral keratinocytes. — Mol Oral Microbiol. — 2013; 28 (2): 129—41. PMID: 23194012
  25. Ding P.-H., Darveau R.P., Wang C.-Y., Jin L. 3LPS-binding protein and its interactions with P. gingivalis LPS modulate pro-inflammatory response and Toll-like receptor signaling in human oral keratinocytes. — PLoS One. — 2017; 12 (4): e0173223. PMID: 28384159
  26. Taxman D.J., Swanson K.V., Broglie P.M., Wen H., Holley-Guthrie E., Huang M.T.-H., Callaway J.B., Eitas T.K., Duncan J.A., Ting J.P.Y. Porphyromonas gingivalis mediates inflammasome repression in polymicrobial cultures through a novel mechanism involving reduced endocytosis. — J Biol Chem. — 2012; 287 (39): 32791—9. PMID: 22843689
  27. Nichols F.C., Bajrami B., Clark R.B., Housley W., Yao X. Free lipid A isolated from Porphyromonas gingivalis lipopolysaccharide is contaminated with phosphorylated dihydroceramide lipids: recovery in diseased dental samples. — Infect Immun. — 2012; 80 (2): 860—74. PMID: 22144487
  28. Nichols F.C., Yao X., Bajrami B., Downes J., Finegold S.M., Knee E., Gallagher J.J., Housley W.J., Clark R.B. Phosphorylated dihydroceramides from common human bacteria are recovered in human tissues. — PLoS One. — 2011; 6 (2): e16771. PMID: 21347306
  29. Clark R.B., Cervantes J.L., Maciejewski M.W., Farrokhi V., Nemati R., Yao X., Anstadt E., Fujiwara M., Wright K.T., Riddle C., Vake C.J.L., Salazar J.C., Finegold S., Nichols F.C. Serine lipids of Porphyromonas gingivalis are human and mouse Toll-like receptor 2 ligands. — Infect Immun. — 2013; 81 (9): 3479—89. PMID: 23836823
  30. Nichols F.C., Housley W.J., O’Conor C.A., Manning T., Wu S., Clark R.B. Unique lipids from a common human bacterium represent a new class of Toll-like receptor 2 ligands capable of enhancing autoimmunity. — Am J Pathol. — 2009; 175 (6): 2430—8. PMID: 19850890
  31. Olsen I., Nichols F.C. Are sphingolipids and serine dipeptide lipids underestimated virulence factors of Porphyromonas gingivalis?. — Infect Immun. — 2018; 86 (7): e00035—18. PMID: 29632248
  32. Wang Y.-H., Jiang J., Zhu Q., AlAnezi A.Z., Clark R.B., Jiang X., Rowe D.W., Nichols F.C. Porphyromonas gingivalis lipids inhibit osteoblastic differentiation and function. — Infect Immun. — 2010; 78 (9): 3726—35. PMID: 20584977
  33. Zhang P., Liu J., Xu Q., Harber G., Feng X., Michalek S.M., Katz J. TLR2-dependent modulation of osteoclastogenesis by Porphyromonas gingivalis through differential induction of NFATc1 and NF-kappaB. — J Biol Chem. — 2011; 286 (27): 24159—69. PMID: 21566133
  34. Bainbridge B.W., Hirano T., Grieshaber N., Davey M.E. Deletion of a 77-base-pair inverted repeat element alters the synthesis of surface polysaccharides in Porphyromonas gingivalis. — J Bacteriol. — 2015; 197 (7): 1208—20. PMID: 25622614
  35. Moye Z.D., Valiuskyte K., Dewhirst F.E., Nichols F.C., Davey M.E. Synthesis of sphingolipids impacts survival of Porphyromonas gingivalis and the presentation of surface polysaccharides. — Front Microbiol. — 2016; 7: 1919. PMID: 27965646
  36. Riethmüller J., Riehle A., Grassmé H., Gulbins E. Membrane rafts in host-pathogen interactions. — Biochim Biophys Acta. — 2006; 1758 (12): 2139—47. PMID: 17094939
  37. Boesze-Battaglia K., Besack D., McKay T., Zekavat A., Otis L., Jordan-Sciutto K., Shenker B.J. Cholesterol-rich membrane microdomains mediate cell cycle arrest induced by Actinobacillus actinomycetemcomitans cytolethal-distending toxin. — Cell Microbiol. — 2006; 8 (5): 823—36. PMID: 16611231
  38. Fong K.P., Pacheco C.M.F., Otis L.L., Baranwal S., Kieba I.R., Harrison G., Hersh E.V., Boesze-Battaglia K., Lally E.T. Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. — Cell Microbiol. — 2006; 8 (11): 1753—67. PMID: 16827908
  39. Imai H., Fujita T., Kajiya M., Ouhara K., Yoshimoto T., Matsuda S., Takeda K., Kurihara H. Mobilization of TLR4 into lipid rafts by Aggregatibacter Actinomycetemcomitans in gingival epithelial cells. — Cell Physiol Biochem. — 2016; 39 (5): 1777—1786. PMID: 27744428
  40. Wang M., Hajishengallis G. Lipid raft-dependent uptake, signalling and intracellular fate of Porphyromonas gingivalis in mouse macrophages. — Cell Microbiol. — 2008; 10 (10): 2029—42. PMID: 18547335
  41. Saito A., Kokubu E., Inagaki S., Imamura K., Kita D., Lamont R.J., Ishihara K. Porphyromonas gingivalis entry into gingival epithelial cells modulated by Fusobacterium nucleatum is dependent on lipid rafts. — Microb Pathog. — 2012; 53 (5—6): 234—42. PMID: 23034475
  42. Li L., Michel R., Cohen J., Decarlo A., Kozarov E. Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis. — BMC Microbiol. — 2008; 8: 26. PMID: 18254977
  43. Brasser A., Barwacz C., Bratt C.L., Dawson D., Brogden K.A., Drake D., Wertz P. Free sphingosine in human saliva. — J Dent Res. — 2011; 90 (Spec A): 3465.
  44. Brasser A.J., Barwacz C.A., Dawson D.V., Brogden K.A., Drake D.R., Wertz P.W. Presence of wax esters and squalene in human saliva. — Arch Oral Biol. — 2011; 56 (6): 588—91. PMID: 21247555
  45. Gorr S.-U. Antimicrobial peptides in periodontal innate defense. — Front Oral Biol. — 2012; 15: 84—98. PMID: 22142958
  46. Desbois A.P., Smith V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. — Appl Microbiol Biotechnol. — 2010; 85 (6): 1629—42. PMID: 19956944
  47. Shikama Y., Kudo Y., Ishimaru N., Funaki M. Potential role of free fatty acids in the pathogenesis of periodontitis and primary Sjögren’s syndrome. — Int J Mol Sci. — 2017; 18 (4): 836. PMID: 28420093
  48. Lu Z., Li Y., Brinson C.W., Kirkwood K.L., Lopes-Virella M.F., Huang Y. CD36 is upregulated in mice with periodontitis and metabolic syndrome and involved in macrophage gene upregulation by palmitate. — Oral Dis. — 2017; 23 (2): 210—218. PMID: 27753178
  49. Sommakia S., Baker O.J. Regulation of inflammation by lipid mediators in oral diseases. — Oral Dis. — 2017; 23 (5): 576—597. PMID: 27426637
  50. Pradeep A.R., Manjunath S.G., Swati P.P., Shikha C., Sujatha P.B. Gingival crevicular fluid levels of leukotriene B4 in periodontal health and disease. — J Periodontol. — 2007; 78 (12): 2325—30. PMID: 18052705
  51. Noguchi K., Miyauchi M., Oka H., Komaki M., Somerman M.J., Takata T. Cyclooxygenase—2-dependent prostaglandin E (2) upregulates interleukin (IL)-1alpha-induced IL-6 generation in mouse cementoblasts. — J Periodontol. — 2007; 78 (1): 135—40. PMID: 17199550
  52. Cianci E., Recchiuti A., Trubiani O., Diomede F., Marchisio M., Miscia S., Colas R.A., Dalli J., Serhan C.N., Romano M. Human periodontal stem cells release specialized proresolving mediators and carry immunomodulatory and prohealing properties regulated by lipoxins. — Stem Cells Transl Med. — 2016; 5 (1): 20—32. PMID: 26607175
  53. Chiurchiù V., Leuti A., Maccarrone M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. — Front Immunol. — 2018; 9: 38. PMID: 29434586
  54. Serhan C.N. Pro-resolving lipid mediators are leads for resolution physiology. — Nature. — 2014; 510 (7503): 92—101. PMID: 24899309
  55. Serhan C.N., Chiang N., Dyke T.E.V. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. — Nat Rev Immunol. — 2008; 8 (5): 349—61. PMID: 18437155
  56. Mizraji G., Heyman O., Dyke T.E.V., Wilensky A. Resolvin D2 restrains Th1 immunity and prevents alveolar bone loss in murine periodontitis. — Front Immunol. — 2018; 9: 785. PMID: 29922275
  57. Chiurchiù V., Leuti A., Dalli J., Jacobsson A., Battistini L., Maccarrone M., Serhan C.N. Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. — Sci Transl Med. — 2016; 8 (353): 353ra111. PMID: 27559094
  58. Gao L., Faibish D., Fredman G., Herrera B.S., Chiang N., Serhan C.N., Dyke T.E.V., Gyurko R. Resolvin E1 and chemokine-like receptor 1 mediate bone preservation. — J Immunol. — 2013; 190 (2): 689—94. PMID: 23241890
  59. Lee C.-T., Teles R., Kantarci A., Chen T., McCafferty J., Starr J.R., Brito L.C.N., Paster B.J., Dyke T.E.V. Resolvin E1 reverses experimental periodontitis and dysbiosis. — J Immunol. — 2016; 197 (7): 2796—806. PMID: 27543615

Загрузки

Опубликовано

15.09.2020