DOI:

10.37988/1811-153X_2019_3_4

Age changes in mineral component and organic matrix of human teeth enamel by electronic and atomic-power microscopy methods

Authors

  • V.D. Vagner 1, PhD in Medical Sciences, full professor of the Dental service organization, licensing and accreditation Department
  • V.P. Konev 2, PhD in Medical Sciences, full professor of the Forensic medicine and jurisprudence Department
  • A.S. Korshunov 2, assistant at the Maxillofacial surgery Department
  • 1 Central Research Institute of Dental and Maxillofacial Surgery, 119021, Moscow, Russia
  • 2 Omsk State Medical University, 644099, Omsk, Russia

Abstract

The results of the research of the 3.8 impacted teeth’s enamel’s mineral component and its organic matrix with the help of electron and atomic force microscopy are studied. It has been stated that 15-20-year-olds have insufficient maturity of the tooth enamel, expressed in a less dense packing of the mineral component, a large proportion of the organic matrix, significant sizes of the prismatic shell, roughness and projections on the surface of enamel prisms. After 20 years, the amount of organic matrix decreases and the mineral prisms harden and increase in size. The presented facts indicate the critical role of the interconnection between the mineral component and the organic matrix in the tooth enamel’s firmness, the importance of which increases after the tooth eruption.

Key words:

mineral component, organic matrix, maturation, atomic force microscopy

For Citation

[1]
Vagner V.D., Konev V.P., Korshunov A.S. Age changes in mineral component and organic matrix of human teeth enamel by electronic and atomic-power microscopy methods. Clinical Dentistry (Russia).  2019; 3 (91): 4—6. DOI: 10.37988/1811-153X_2019_3_4

References

  1. Коршунов А.С., Конев В.П., Сулимов А.Ф. Возможности оценки качества эмали зубов при наследственной патологии соединительной ткани методом атомно-силовой микроскопии. - Материалы XV Всероссийского стоматологического форума Дентал-Ревю. - Российская стоматология. - 2017; 10 (1): 43-4.
  2. Мирсалихова Ф.Л. Особенности биофизических свойств и минерализующей функции слюны у детей в период прорезывания постоянных зубов. - Клиническая стоматология. - 2016; 80(4): 4-6.
  3. Московский С.Н., Коршунов А.С., Шестель И.Л., Конев В.П., Хамов М.А., Марковский С.О. Использование атомно-силовой микроскопии в изучении плотных тканей орофациальной области. - Казанский медицинский журнал. - 2012; 6: 887-91.
  4. Рзаева Т.А., Ковылина О.С., Кисельникова Л.П. Стоматологическая реабилитация детей при наследственном незавершенном амелогенезе. - Клиническая стоматология. - 2014; 70(2): 4-6.
  5. Шестель И.Л., Коршунов А.С., Лосев А.С., Шестель Л.А., Давлеткильдеев Н.А., Конев В.П. Способ изготовления препаратов зубов для морфологических исследований эмалевых призм в атомно-силовом (АСМ) и инвертированном микроскопах. - Патент РФ № 2458675 от 20.08.2012.
  6. Коршунов А.С., Мухин А.Н., Серов Д.О., Конев В.П., Московский С.Н. Глубиномер стоматологический. - Патент РФ № 187021 от 13.02.2019.
  7. Adeleke-Stainback P., Chen E., Collier P., Yuan Z.A., Piddington R., Decker S., Rosenbloom J., Gibson C.W. Analysis of the regulatory region of the bovine X-chromosomal amelogenin gene. - Connect Tissue Res. - 1995; 32 (1-4): 115-8.
  8. Al Kawas S., Warshawsky H. Ultrastructure and composition of basement membrane separating mature ameloblasts from enamel. - Arch Oral Biol. - 2008; 53 (4): 310-7.
  9. Aoba T., Moreno E.C. The enamel fluid in the early secretory stage of porcine amelogenesis: chemical composition and saturation with respect to enamel mineral. - Calcif Tissue Int. - 1987; 41 (2): 86-94.
  10. Bei M. Molecular genetics of ameloblast cell lineage. - J Exp Zool B Mol Dev Evol. - 2009; 312B (5): 437-44.
  11. Beyeler M., Schild C., Lutz R., Chiquet M., Trueb B. Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. - Exp Cell Res. - 2010; 316 (7): 1202-12.
  12. Birch W., Dean C. Rates of enamel formation in human deciduous teeth. - Front Oral Biol. - 2009; 13: 116-20.
  13. Daculsi G., Kerebel B. High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. - J Ultrastruct Res. - 1978; 65 (2): 163-72.
  14. Daculsi G., Menanteau J., Kerebel L.M., Mitre D. Length and shape of enamel crystals. - Calcif Tissue Int. - 1984; 36 (5): 550-5.
  15. Diekwisch T.G., Berman B.J., Gentner S., Slavkin H.C. Initial enamel crystals are not spatially associated with mineralized dentine. - Cell Tissue Res. - 1995; 279 (1): 149-67.
  16. Fincham A.G., Moradian-Oldak J., Simmer J.P., Sarte P., Lau E.C., Diekwisch T., Slavkin H.C. Self-assembly of a recombinant amelogenin protein generates supramolecular structures. - J Struct Biol. - 1994; 112 (2): 103-9.
  17. Gibson C.W. Regulation of amelogenin gene expression. - Crit Rev Eukaryot Gene Expr. - 1999; 9 (1): 45-57.
  18. Gibson C.W., Yuan Z.A., Hall B., Longenecker G., Chen E., Thyagarajan T., Sreenath T., Wright J.T., Decker S., Piddington R., Harrison G., Kulkarni A.B. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. - J Biol Chem. - 2001; 276 (34): 31871-5.
  19. Hart P.S., Hart T.C., Michalec M.D., Ryu O.H., Simmons D., Hong S., Wright J.T. Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. - J Med Genet. - 2004; 41 (7): 545-9.
  20. Kawasaki K., Weiss K.M. SCPP gene evolution and the dental mineralization continuum. - J Dent Res. - 2008; 87 (6): 520-31.
  21. Kerebel B., Daculsi G., Kerebel L.M. Ultrastructural studies of enamel crystallites. - J Dent Res. - 1979; 58 (spec Issue B): 844-51.
  22. Lacruz R.S., Bromage T.G. Appositional enamel growth in molars of South African fossil hominids. - J Anat. - 2006; 209 (1): 13-20.
  23. Lacruz R.S., Nanci A., Kurtz I., Wright J.T., Paine M.L. Regulation of pH During Amelogenesis. - Calcif Tissue Int. - 2010; 86 (2): 91-103.

Published on

September 1, 2019