Hardness of dental ceramics

Authors

  • S.A. Nikolaenko 1, 2, д.м.н., профессор, главный научный сотрудник; директор
  • I.V. Ilyenko 3, стоматолог-терапевт
  • A.I. Zubarev 3, к.м.н.
  • L.A. Shapiro 4, доцент кафедры медицинской и биологической физики
  • A. Muschweck 5, доктор (PhD), клиника стоматологии № 1
  • U. Lohbauer 5, доктор (PhD), профессор, клиника стоматологии № 1
  • 1 НИИ медицинских проблем Севера СО РАМН
  • 2 профессорская стоматология и научно-образовательный центр «ЗубНик»
  • 3 Профессорская стоматология и научно-образовательный центр «ЗубНик»
  • 4 Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого
  • 5 Фридрих-Александр университет Эрлангена-Нюрнберга

Abstract

The objective of this study was to test the new fluorapatite-containing veneering ceramics IPS E.max Ceram (Ivoclar Vivadent, Schaar, Liechtenstein) for its mechanical property and mechanisms are responsible for the failure of such materials. The comparison of the values of the initial flexural strength showed that the samples stored in silicone oil had a significantly higher initial flexural strength than the samples of the reference group stored in water without final firing and with final firing. On the other hand the comparison of the E-modules between the two groups of water and silicone oil showed no significant difference. The subsequent fractographic analysis of the sample material showed a direct correlation between structural homogeneity and break resistance. Moreover, the comparison of the samples of a fracture due to fatigue with those of an initial fracture showed significant morphological differences with regard to its fracture behavior.

Key words:

ceramics, E-modules, fatigue, flexural strength, staircase approach

For Citation

[1]
Nikolaenko S.A., Ilyenko I.V., Zubarev A.I., Shapiro L.A., Muschweck A., Lohbauer U. Hardness of dental ceramics. Clinical Dentistry (Russia).  2015; 1 (73): 10—14

References

  1. Дьяконенко Е.Е. Ортопедическое лечение безметалловой керамикой как альтернативный способ восстановления зубов. - Новое в стоматологии.-2000; 1 (9): 3-14.
  2. Anusavice K. Standardizing failure, success and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses. - Dent Mater. - 2012; 28: 102-11.
  3. Apel E., Deubener J., Bernard A., Holand M., Muller R., Kappert H., Rheinberger V., Holand W. Phenomena and mechanisms of crack propagation in glass-ceramics. - J Mech Behav Biomed Mater. - 2008; 1: 313-25.
  4. Draughn R. Compressive fatigue limits of composite restorative materials. - J Dent Res. - 1979; 58: 1093-6.
  5. EN ISO 4049. Dentistry-polymer-based filling, restorative and luting materials, 1st ed. - International Standard; 2000.
  6. Kim B., Zhang Y., Pines M., Thompson V.P. Fracture of porcelain-veneered structures in fatigue. - J Dent Res. - 2007; 86: 142-6.
  7. Lohbauer U. Zirkonoxid braucht Kenntnisse. - Dtsch Zahnärztebl. - 2012; 121: 166-70.
  8. Lohbauer U., Frankenberger R., Krämer N., Petschelt A. Strength and fatigue performance versus filler fraction of different types of direct dental restoratives. - J Biomed Mater. - 2006; 76: 114-20.
  9. Øilo M., Gjerdet N.R. Qualitative and quantitative fracture analyses of high-strength ceramics. - Eur J Oral Sci. - 2009; 117: 187-93.
  10. Stolz K., Kuhn Т., Honnef В. CAD/CAM в восстановительной стоматологии. Полная санация цельнокерамическими реставрациями из оксида циркония. - Новое в стоматологии. - 2008; 2: 32-42.
  11. Tinschert J., Natt G., Mohrbotter N., Spiekermann H., Schulze K.A. Lifetime of aluminia and zirconia ceramics used for crown and bridge restorations. - J Biomed Mat. - 2007; 80: 317-21.
  12. Vult von Steyern P., Carlson P., Nilner K. All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. - J Oral Rehabil. - 2005; 32 (3): 180-7.
  13. Weibull W. A statistical distribution function of wide applicability. - J Appl Mech. - 1951; 293-8.

Published on

March 1, 2015